
SUPER NINTENDO
ENTERTAINMENT SYSTEM

DEVELOPMENT
MANUAL

BOOK II

SNES DEVELOPMENT MANUAL

"Confidential"

This document contains confidential and
proprietary information of Nintendo and
is also protected under the copyright laws
of the United States and foreign countries.
No part of this document may be released,
distributed, transmitted or reproduced in
any form or by any electronic or
mechanical means, including information
storage and retrieval systems, without
permission in writing from Nintendo.

© 1993, 1994, 1995 Nintendo

The terms Sony and Sony NEWS are
registered trademarks of Sony Corporation.
® and TM are registered trademarks of
Nintendo.

SUBJECT

Table of Contents

BOOK II

TABLE of CONTENTS

PAGE·

SECTION 1 - SUPER ACCELERATOR (SA-l) I-I-1

Super Accelerator System Functions .. 1-1-1
Configuration of SA-l .. 1-2-1
Super Accelerator Memory Map .. 1-3-1
SA-l Internal Register Configuration ... 1-4-1
Multi-Processor Processing .. 1-5-1
Character Conversion .. 1-6-1
Arithmetic Function .. 1-7-1
Variable-Length Bit Processing .. 1-8-1
DMA ... 1-9-1
SA-l Timer ... 1-10-1

SECTION 2 - SUPER FX® .. 2-1-1

Introduction to Super FX .. 2-1-1

GSU Functional Operation ... 2-2-1

Memory Mapping ... 2-3-1

GSU Internal Register Configuration ... 2-4-1

GSU Program Execution ... 2-5-1

Instruction Execution .. 2-6-1

Data Access ... 2-7-1

GSU Special Functions ... 2-8-1

Description of Instructions .. 2-9-1

SECTION 3 - DSPIDSPl ... 3-1-1

Introduction to DSPI .. 3-1-1

Command Summary ... 3-2-1

Parameter Data Type ... 3-3-1

Use of DSP1 .. 3-4-1

Description of DSPI Commands .. 3-5-1

Math Functions and Equations .. 3-6-1

TABLE of CONTENTS

Table of Contents (Continued)

SUBJECT PAGE

SECTION 4 - ACCESSORIES .. .4-1-1

The Super NES Super Scope ® System .. .4-1-1

Principles of the Super NES Super Scope4-2-1

Super NES Super Scope Functional Operation4-3-1

Super NES Super Scope Receiver Functions4-4-1

Graphics .. 4-5-1

Super NES Mouse Specifications .. .4-6-1

Using the Standard BIOS .. 4-7-1

Programming Cautions ... 4-8-1

MultiPlayer 5 Specifications .. .4-9-1

MultiPlayer 5 Supplied BIOS .. .4-10-1

SUPPLEMENTAL INFORMATION

Super NES Parts List .. 1
Game Content Guidelines ... 3
Guidelines Concerning Commercialism and Promotion of Licensee
Products or Services in Nintendo Licensed Games .. 5
Super NES Video Timing Information ... l 0

INDEX

BULLETINS

ii

List of Figures

BOOK II

TITLE
FIGURE
NUMBER

LIST of FIGURES

PAGE

Super Accelerator System Configuration .. 1-1-1 1-1-3
SAS Bus Image .. 1-1-2 1-1-4
SA-l Block Diagram .. 1-2-1 1-2-1
Bitmap Register Files 0-7 ... 1-4-1 1-4-24
Bitmap Register Files 8-F ... 1-4-2 1-4-25
Accelerator Mode ... 1-5-1 1-5-6
Parallel Processing Mode ... 1-5-2 1-5-7
Mixed Processing Mode .. 1-5-3 1-5-8
Character Conversion 1 .. 1-6-1 1-6-1
Character Conversion 2 .. 1-6-2 1-6-2
Compressed Bitmap Data .. 1-6-3 1-6-3
Bitmap Image Projection ... 1-6-4 1-6-3
Bitmap Data Expansion ... 1-6-5 1-6-5
Memory Addresses for the Bitmap Area ... 1-6-6 1-6-6
Character Conversion Buffers .. 1-6-7 1-6-7
Fixed Mode Process Flow Diagram ... 1-8-1 1-8-2
Auto-increment Mode Process Flow Diagram .. 1-8-2 1-8-3
Barrel Shift Process .. 1-8-3 1-8-5
Normal DMA ... 1-9-1 1-9-1
Character Conversion DMA .. 1-9-2 1-9-1
Super FX System Configuration .. 2-1-1 2-1-3
Game Pak ROMIRAM Bus Diagram .. 2-1-2 2-1-4
GSU Functional Block Diagram .. 2-2-1 2-2-1
Super NES CPU Memory Map .. 2-3-1 2-3-2
Super FX Memory Map ... 2-3-2 2-3-4
Example of General Register ... 2-4-1 2-4-2
128 Dot High BG Character Array .. 2-8-1 2-8-2
160 Dot High BG Character Array .. 2-8-2 2-8-2
192 Dot High BG Character Array .. 2-8-3 2-8-2
OBJ Character Array .. 2-8-4 2-8-3
Plot Operations Assigned by CMODE .. 2-8-5 2-8-13
System Block Diagram (DSP1) ... 3-1-1 3-1-2
Super NES CPU and DSPI Communications ... 3-1-2 3-1-3
DSPI Command Execution ... 3-1-3 3-1-3
Mode 20IDSP Memory Map .. 3-1-4 3-1-4
Mode 21IDSP Memory Map .. 3-1-5 3-1-5
Super NESIDSPI Memory Mapping (Mode 21) 3-4-1 3-4-1
DSPI Status Register Configuration .. 3-4-2 3-4-2

iii

List of Figures (Continued)

TITLE
FIGURE
NUMBER

LIST of FIGURES

PAGE

DSP1 Operations Flow Diagram ... 3-4-3 3-4-3
Super NES CPUIDSP1 Operational Timing .. 3-4-4 3-4-4
Trigonometric Calculation ... 3-5-1 3-5-3
Vector Calculation ... 3-5-2 3-5-4
Vector Size Comparison .. 3-5-3 3-5-6
Vector Absolute Value Calculation ... 3-5-4 3-5-7
Two-Dimensional Coordinate Rotation ... 3-5-5 3-5-8
Examples of Three-Dimensional Rotation ... 3-5-6 3-5-11
Assignment of Projection Parameter .. .3-5-7 3-5-13
Relationship of Sight and Projected Plane ... 3-5-8 3-5-13
Calculation of Raster Data ... 3-5-9 3-5-16
BG Screen and Displayed Area ... 3-5-10 3-5-16
Calculation of Projected Position of Object.. ... 3-5-11 3-5-18
Projection Image of Object .. 3-5-12 3-5-19
Calculation of Coordinates for the Indicated Point on the Screen 3-5-13 3-5-20
Attack Point and Position Indicated on Screen (Side View) 3-5-14 3-5-21
Attitude Computation3-:5-153-5-23
Object Coordinate Rotated on Y Axis ... 3-5-16 3-5-23
Object Coordinate Rotated on X Axis ... 3-5-17 3-5-23
Object Coordinate Rotated on Z Axis .. 3-5-18 3-5-23
Conversion of Global to Objective Coordinates 3-5-19 3-5-26
Conversion of Object to Global Coordinates ... 3-5-20 3-5-28
Calculation of Inner Product with Forward Attitude 3-5-21 3-5-29
Position of Aircraft and Vector Code .. 3-5-22 3-5-30
Calculation of Rotation Angle After Attitude Change 3-5-23 3-5-32
Signal Flow .. 4-1-1 4-1-1
Optical Alignment .. 4-1-2 4-1-2
Virtual Screen Alignment4-1-34-1-2
Address and Bit Assignments4-1-44-1-5
Picture Tube ... 4-2-1 4-2-1
Scanning ... 4-2-2 4-2-2
Area Seen by Super NES Super Scope .. 4-2-3 4-2-3
Vertical Positioning ... 4-2-4 4-2-4
Horizontal Positioning .. .4-2-5 4-2-5
HorizontalN ertical Counter .. .4-2-64-2-6
Super NES Super Scope Block Diagram .. .4-3-1 4-3-2
Super NES Super Scope Flow Diagram .. 4-3-2 4-3-3
Raster Signal .. 4-3-3 4-3-4
Definition of One Bit ... 4-3-4 4-3-5
Output Signal Code .. 4-3-5 4-3-5
Definitions of Codes .. 4-3-6 4-3-6

iv

List of Figures (Continued)

TITLE
FIGURE
NUMBER

LIST of FIGURES

PAGE

Raster Signal Transmission Timing .. ,4-3-7 ,4-3-7
Receiver Block Diagram4-4-14-4-1
Operation Flow Diagram ... 4-4-2 4-4-2
Recei vern'ransmitter Interface Schematic ... 4-4-34-4-3
One Bit Code Detection .. .4-4-44-4-4
Cursor Mode Raster Detection Cycle4-4-54-4-6
Trigger Mode, Single Shot ... 4-4-6 4-4-7
Trigger Mode, Multiple Shots .. 4-4-7 4-4-8
Noise Flag .. 4-4-8 4-4-9
Null Bit .. 4-4-9 4-4-9
Pause Bit .. 4-4-10 4-4-10
Trigger, Single Shot .. .4-4-114-4-11
Trigger, Multiple Shots4-4-124-4-12
Optical Color Sensitivity Chart4-5-14-5-2
Valid Hyper Mouse Data String4-6-14-6-2
Serial Data Read Timing4-6-24-6-3
Explanation of Data Strings 2 Bits or Longer. ... 4-6-3 4-6-6
Super NES Hyper Mouse Dimensions .. .4-6-44-6-7
Standard BIOS, Output Register .. 4-7-14-7-3
Examples of Speed Switching Program Subroutine Call4-7-24-7-4
MultiPlayer 5 Device Hardware Connections .. .4-9-14-9-2
MultiPlayer 5 Read Timing Chart, 5P Mode .. .4-9-24-9-5
Data Read Timing for Dissimilar Devices .. .4-9-34-9-8
Valid Controller Data String4-9-44-9-12
Sample Program Display Format .. .4-10-14-10-2

v

LIST of TABLES

List of Tables

BOOK!!

TABLE
TITLE NUMBER PAGE

Types of Interrupts ... 1-5-1 1-5-2
Interrupt Identification and Clear ... 1-5-2 1-5-2
Interrupt Mask .. 1-5-3 1-5-3
Sending and Receiving a Message ... 1-5-4 1-5-3
Situation Dependant Vectors ... 1-5-5 1-5-4
Operating Modes and Processing Speeds .. 1-5-6 1-5-9
Horizontal Size of VRAM (CDMA Register) ... 1-6-1 1-6-6
Number of Zero Bits in BW -RAM .. 1-6-2 1-6-8
Character Conversion and Data Format. .. 1-6-3 1-6-1 0
Arithmetic Operations Settings and Cycles ... 1-7 -1 1-7-1
Amount of Barrel Shift .. 1-8-1 1-8-4
Source Device Settings .. 1-9-1 1-9-3
Destination Device Settings ... 1-9-2 1-9-3
DMA Transmission Speed ... 1-9-3 1-9-4
Timer Modes and Their Ranges ... 1-1 0-1 1-1 0-1
Timer Interrupts ... 1-1 0-2 1-1 0-2
Registers Listed by Functional Group ... 2-2-1 2-2-3
Instruction Set .. 2-2-2 2-2-6
GSU General Registers .. 2-4-1 2-4-1
GSU Status Register Flags ... 2-4-2 2-4-4
Screen Height ... 2-4-3 2-4-8
Color Gradient ... 2-4-4 2-4-8
Dummy Interrupt Vector Addresses .. 2-5-1 2-5-4
Dummy Data .. 2-5-2 2-5-5
Functions of CMODE .. 2-8-1 2-8-9
DSPI Command Summary .. 3-2-1 3-2-1
Parameter Data Type .. 3-3-1 3-3-1
Signal Bit Definitions4-1-14-1-6
MultiPlayer 5 Switch Function4-9-14-9-3
MultiPlayer 5 Data Format4-9-24-9-6

vi

SUPER A CCEL ERA TOR SYSTEM FUNCTIONS

Chapter 1 Super Accelerator System Functions

The co-processor installed on the Super Accelerator System (SA-1) is an LSI developed
to work with the Super NES CPU and enhance its processing speed, graphics, and arith
metic functions.

1.1 SA-1 FEATURES

1.1.1 CPU CORE

The SA-1 uses a 16-bit 65C816 processor for its CPU core (SA-1 CPU).
It can process the same commands as the Super NES CPU. No new ar
chitecture needs be learned and existing programs can be used without
modification.

Because the 65C816 is a 16-bit CPU, it efficiently processes 16-bit oper
ations such as X and Y character coordinates.

Due to the commonality of the core CPUs, evaluation of the coprocessor
in the middle of game development is quite simple and program modifica
tions are kept to a minimum.

1.1.2 CPU SPEED

The SA-1 CPU operates at 10.74 MHz, which is four times faster than the
normal operating speed of the Super NES CPU.

The SA-1 CPU and the Super NES CPU operate simultaneously, which
results in five times greater performance of the Super Accelerator System
(SAS) over the current Super NES.

1.1.3 INTERNAL RAM

The SA-1 has a 2 Kbyte internal work RAM (SA-1 I-RAM). This RAM can
be used as the SA-1 CPU's page-zero stack, or as protected memory
with a backup battery, when connected to an external battery.

1.1.4 COMMON MEMORY MAPPING

The Super NES CPU and SA-1 CPU use the same memory mapping.
SA-1 programs can be developed with the Super' NES Emulator-SE.

Subroutines can be shared by both CPUs, resulting in efficient use of
memory.

1.1.5 LARGE-CAPACITY MEMORY

The SAS has a total capacity of 64 Mbits of ROM and 2 Mbytes of RAM.
SRAM is used for I-RAM and back-up/work RAM (BW-RAM), and can be
protected with a backup battery.

1-1-1

SNES DEVELOPMENT MANUAL

1.1.6 ARITHMETIC HARDWARE

The SA-1 has hardware for high-speed execution of multiplication (16 bits
x 16 bits), division (16 bits x 16 bits), and cumulative arithmetic (I(16 bits
x 16 bits)) operations. This results in high-speed calculation of matrix and
3D arithmetic operations.

1.1.7 BIT-MAP DATA OPERATIONS

The SAS allows virtual bitmap VRAM to be set up in the SA-1 CPU's
RAM area. The bitmap data in virtual VRAM can be converted to Super
NES PPU character format via hardware using DMA functions.

1.1.8 VARIABLE-LENGTH BIT DATA OPERATIONS

The SA-1 has a function to read ROM data as 1-16 bit variable-length
data, treating ROM data as strings of one-bit data. This allows for high
speed expansion of compressed data.

1.1.9 CUSTOM DMA CIRCUIT

The SA-1 has a custom DMA ci""'~it in addition to the Super NES CPU's
multi-purpose H-DMA. The DMA circuit performs data transfer between
ROM, RAM and SA-1 BW-RAM. During DMA transfer, bitmap-to-charac
ter conversion, and sequential operations with the Super NES CPU multi
purpose DMA can be performed.

1.1.10 TIMER FUNCTION

The SA-1 has an HV timer synchronized to the Super NES PPU. The HV
timer can be used to reference the scan line position on the screen by the
SA-1 CPU or to generate HV interrupts. The timer can also be used as a
linear timer.

1.1.11 INCREASED LEVEL OF SECURITY

The SA-1 is connected between the Super NES CPU and memory .
(ROM, RAM). The SA-1 ROM is also different from the standard Super
NES game pak ROM. This guards against unlicensed products and FD
copies.

1-1-2

SUPER ACCELERATOR SYSTEM FUNCTIONS

1.2 SYSTEM CONFIGURATION

The following diagram depicts the SAS system configuration.

The SA-1 and memory (game pak ROM and BW-RAM) are installed in the game
pak. When desired, data can be protected by connecting a backup battery to BW
RAM or SA-1 I-RAM.

When external RAM is not required, the system can also be configured without
BW-RAM.

Game
Pak ROM BW-RAM

-

Address Address

D~a D~a

SA-1

Address Data

Super NES CPU

Figure 1-1-1 Super Accelerator System Configuration

1-1-3

: Back-Up:
: _I?~!t~_ry _ ~

Optional

: S-ack-Up:
: _I?~!t~_ry _ ~

I

Optional

SAS

Super NES
Control
Deck

SNES DEVELOPMENT MANUAL

1.3 BUS IMAGE DIAGRAM

The bus image as seen by the SAS software is depicted below. The SA-1 CPU
can access game pak ROM, BW-RAM and I-RAM.

The Super NES CPU can access game pak ROM, BW-RAM, I-RAM, Super NES
PPU, Super NES WRAM and Super NES APU.

I-RAM

(SA-1)

Super NES
PPU

SA-1 CPU

Super NES
CPU

Figure 1-1-2 SAS Bus Image

Game Pak
ROM

BW-RAM

Super NES
WRAM

The two MPUs (Super NES CPU and SA-1 CPU) can freely access memory
(game pak ROM, BW-RAM and I-RAM). If the two MPUs try to access the same
memory at the same time, one of the MPUs is automatically excluded, and any
conflict is averted.

1-1-4

CONFIGURA TION OF SA-1

Chapter 2 Configuration of SA-1

2.1 SA-1 FUNCTIONAL DESCRIPTION

The SA-1 is internally comprised of nine components. A block diagram is illustrat
ed below.

SA-1 CPU

(65C816)

I-RAM

16 Kbit

I
N
T
E
R
N
A
L

C
o
N
T
R
o
L
L
E
R

Arithmetic
Circuit

Character
Conversion Circuit

Variable-Length Bit
Processing Circuit

Timer
Circuit

DMA
Circuit

Super NES CPU
1/0

To
Game Pak Connector

Figure 1-2-1 SA-1 Block Diagram

1-2-1

To
GPK
ROM

To
BW-RAM

SNES DEVELOPMENT MANUAL

2.1.1 SA-1 CPU

The 65C816 serves as the CPU core. It operates at 10.74 MHz.

2.1.2 I-RAM

The I-RAM consists of a 16 Kbit RAM. The SA-1 CPU can access the 1-
RAM at 10.74 MHz in a no-wait state.

The I-RAM data can be protected by connecting RAM to an external bat
tery.

2.1.3 SUPER MMC

The Super MMC performs memory control in a map mode where the
ROM capacity exceeds 32 Mbits (Map Mode 22).

The SA-1 has a Super MMC chip emulation circuit.

The Super MMC includes a backup data protection function.

2.1.4 INTERNAL CONTROLLER

This controls bus access within the SA-1. It performs collision control
functions between Super NES CPU and SA-1 CPU.

2.1.5 ARITHMETIC CIRCUIT

The arithmetic circuit hardware performs multiplication, division, and cu
mulative arithmetic operations.

2.1.6 CHARACTER CONVERSION CIRCUIT

The character conversion circuit hardware converts bitmap data to char
acter data format.

2.1.7 VARIABLE-LENGTH BIT PROCESSING CIRCUIT

The variable-length bit processing circuit hardware processes data in the
game pak ROM as 1-16 bit variable-length data.

2.1.8 TIMER CIRCUIT

The SA-1 has a HV timer which is equivalent to the Super NES PPU tim
er. The timer can also be used as an 18-bit linear timer.

2.1.9 DMA CIRCUIT

The DMA circuit transfers data between game pak ROM, BW-RAM and 1-
RAM.

1-2-2

CONFIGURATION OF SA-1

2.2 MEMORY ACCESS

2.2.1 GAME PAK ROM ACCESS

The Super NES CPU and SA-1 CPU share the entire game pak ROM
area and can both freely access it. This is known as 2-phase access.

When only the SA-1 CPU uses game pak ROM, the SA-1 CPU operates
at 10.74 MHz. During this period the Super NES CPU executes its pro
gram on Super NES WRAM.

When both the Super NES CPU and SA-1 CPU execute a program on
game pak ROM, the SA-1 CPU runs at 5.37 MHz and the Super NES
CPU runs at 2.68 MHz.

The SAS cannot utilize the Super NES CPU's high-speed mode (3.58
MHz). It operates at a fixed speed of 2.68 MHz even when only the Super
NES CPU uses game pak ROM. This timing is illustrated below for each
of these conditions.

2.2.1.1 ONLY SA-1 CPU USES ROM

:--10.74 MHz C=SA-1 CPU

It Iclclclclclclclclclclclclclclcl
SA-1
CPU

2.2.1.2 SUPER NES CPU ACCESSES ROM DURING SA-1 CPU OP
ERATIONS

10.74 MHz
:--S.37MHz

C=SA-1 CPU
S-CPU=Super NES CPU

i tic I cis-cpu I c I c I c I cis-cpu I c I cis-cpu I c I
SA-1 f f f
CPU SA-1 SA-1 SA-1

CPU Wait CPU Wait CPU Wait

2.2.1.3 BOTH PROCESSORS ACCESS ROM (2-PHASE ACCESS)

C=SA-1 CPU
10.74 MHz . S-CPU=Super NES CPU

~S.37MHz

it i c Is-cpul c I c Is-cpul c I c I s-cpu I c I c I s-cpu I
SA-1 f f f f
CPU SA-1 SA-1 SA-1 SA-1

CPU Wait CPU Wait CPU Wait CPU Wait

1-2-3

SNES DEVELOPMENT MANUAL

2.2.2 BW-RAM ACCESS

The Super NES CPU and SA-1 CPU share all areas of BW-RAM and can
freely access it (two-phase access).

The SA-1 CPU accesses BW-RAM at 5.37 MHz and the Super NES CPU
accesses BW-RAM at 2.68 MHz.

2.2.2.1 ONLY SA-1 CPU USES BW-RAM

:'-S.37MHz

Read Read Read

No Access No Access
No Access

2.2.2.2 SUPER NES CPU ACCESSES BW-RAM DURING SA-1 CPU
OPERATIONS

C-CPU=SA-1 CPU Access
---; :.-S.37MHz S-CPU=Super NES CPU Access

I C-CPU ~ C-CPU Is-cpu. C-CPU I C-CPU I S-CPU I

No Access No Access

2.2.2.3 BOTH PROCESSORS ACCESS BW-RAM (2-PHASE ACCESS)

C-CPU=SA-1 CPU Access
--.. :.-S.37MHz S-CPU=Super NES CPU Access

I S-CPU I C-CPU I S-CPU I C-CPU Is-cPU • S-CPU I C-CPU I

No Access

1-2-4

CONFIGURA TION OF SA-1

2.2.3 SA-1 I-RAM ACCESS

The Super NES CPU and SA-1 CPU can both access all areas of SA-1 1-
RAM at any time.

2.2.3.1 ONLY THE SA-1 CPU ACCESSES I-RAM

C=SA-1 CPU Access

:'-10.74 MHz

Ist~ c I c ~ c • c ~ c ~ c I
CPU No Access No Access No Access No Access

2.2.3.2 BOTH SA-1 CPU AND SUPER NES CPU ACCESS I-RAM

Super C=SA-1 CPU Access
NES CPU S=Super NES CPU Access

-. :--10.74MHz !
I t ~c Ie Is ~ c~c I s ~d§§1 sic I
SA-1 "J 'V
CPU No Access No Access No Access

1-2-5

I

'-f

Super NES Memory Map (SAS, Super NES CPU)
(,.)

~

, , , , , ,,' , 'ii' ii'

Select
Game
Pak

ROM
Image

[3J
or

Bank
FX

Data

Select
Game
Pak

ROM
Image

[2J
or

Bank
EX

Data

I I I

... :®'@' @'®': @'

64M S6M 48M 40M 32M 24M 16M 8M

M-ROM (MAX 64M bit)

I ..,VI ~ ~ , Y' YY Y& Y , YYI I 3: m
Select
Game
Pak

ROM
Image

[1 J
or

Bank
OX

Data

Select
Game Pak

ROM Image
[0]
or

Bank
CX

Data
I

I

I

:®@I@®: @ CD

FFFFH

EOOOH

COOOH

AOOOH

BOOOH

•••••••• 9 ••••••••• 6000H

~~~~~~~~~~4000H ~ 3BOOH 

li~;\IIn;~~.u.;:~~~~~~~~ 3000H 
~~~~~~~~""""~~2400H 
nKnntmtmMnfi1M11Mt1Mt1~ 2200H 2000H

s:
o
~
s:
l>
-a
"T1
JJ
o
s:
CIJ
c:
-a
m
JJ
z
m
CIJ
o
-a
c:
-a
m
JJ
CIJ
-a
m

1111 OOOOH I ~

BW-RAM Image: The user can select one block from blocks ~
00-1 F and output its image to addresses
6000H-7FFFH in banks 00-3F and

~
aO-BF.

Only the Super NES CPU and PPU registers have
access to these areas.

g
~
~ ...,
~

C'-J

~
~
~
~
~
~

~
i3
S' ...,

~
~
Q

~

~
~

~
rn
~
~ ,....

~
~
-;

~
~

~ ,....

W
N

Super NES Memory Map (SAS, SA-1 CPU)
iii iii iii iii i

Select Select II

Game Game
7F)

Pak Pak
ROM ROM
Image Image B [3] [2]

or or
Bank Bank
FX EX

Data Data

64M S6M 48M 40M 32M 24M 16M 8M

M~ROM (MAX 64M bit)

FFFFH

Select Select
Game Game Pak

Pak ROM Image
ROM [0] EOOOH

Image or
[1] Bank
or CX COOOH

Bank Data
DX

Data AOOOH

:®® @®: ® : <D

BOOOH

~~~-!-~-I-~-I-!-~-~--IIII~ ::: I 3800H 

3000H 
2400H 
2200H 
2000H 

_ _ _ _ __ OBOOH 
OOOOH 

BW-RAM Image: The user can select one block from blocks 
00-7F and output its image to addresses 
6000H-7FFFH in banks 00-3F and 
aO-BF. 

~ Only the Super NES CPU and PPU registers have 
access to these areas. 

w 
~ 

3: 
m 
3: 
0 
:tJ 
-< 
3: 
l> 
"tJ 

" :tJ 
0 
3: 
en 
l> 
I 

....l 

0 
"tJ 
C 
"tJ m 
:tJ en 
"tJ 
m 
0 
-I 

I~ <: m 
):. 
C) 
C) 

~ 
~ 
:b 

d 
JJ 
~ 

~ 
0 
JJ 
""< 

~ 
'1l 



SNES DEVELOPMENT MANUAL 

3.3 SUPER MMC 

The Super MMC is a Super NES memory controller which can support a ROM ca
pacity in excess of 32 Mbits. The memory map used by the Super MMC is called 
Map Mode 22. The SA-1 contains the Super MMC memory control function. Map 
Mode 22 features are described below. 

3.3.1 ROM BANK SWITCHING 

The entire mask ROM is divided into B Mbit blocks, which can be project
ed onto the B Mbit areas, OOOOH-FFFFH in banks COH-CFH, DOH-DFH, 
EOH-EFH, and FOH-FFH. The same B Mbit data can be projected onto 
multiple areas. 

3.3.2 ROM IMAGE PROJECTION 

The ROM data in banks CXH, DXH, EXH, and FXH, described above, is 
image projected onto, respectively, the B Mbit area BOOOH-FFFFH, in 
banks OOH-1 FH, 20H-3FH, BOH-9FH, and AOH-BFH. 

The image projection method used is different from that used in Map 
Mode 21 in that the ROM data is projected in successive order, as dem
onstrated below. 

CO:OOOOH-CO:7FFFH ~ OO:BOOOH-OO:FFFFH 
CO:BOOOH-CO:FFFFH ~ 01 :BOOOH-01 :FFFFH 
C1 :OOOOH-C1 :7FFFH ~ 02:BOOOH-02:FFFFH 

• 
• 
• 

CF:BOOOH-CF:7FFFH ~ 1 F:BOOOH-1 F:FFFFH 

It is also possible to project the first B Mbits of data in the mask ROM 
(OO:OOOOH-OF:FFFFH) onto bank OOH-1 FH, regardless of the settings 
for banks CXH, DXH, EXH, and FXH. In a similar manner, data in 
1 O:OOOOH-1 F:FFFFH, 20:0000H-2F:FFFFH, and 30:0000H-3F:FFFFH 
can be projected onto banks 20H-3FH, BOH-9FH, and AOH-BFH, re
spectively. 

3.3.3 BACKUP RAM 

Backup RAM is assigned to areas in bank 40H, justified to OOOOH, as il
lustrated below. 

16K RAM: 
64K RAM: 
256K RAM: 
1M RAM: 

1-3-3 

40:0000H-40:07FFH 
40:0000H-40: 1 FFFH 
40:0000H-40:7FFFH 
40:0000H-41 :FFFFH 



SUPER ACCELERA TOR MEMORY MAP 

Backup RAM is image projected to the 64 Kbit areas in 6000H-7FFFH of 
banks OOH-3FH and 80H-BFH. The backup area can be divided into 64 
Kbit blocks. Any of these blocks can be projected as images. The data is 
identical in banks OOH-3FH and 80H-BFH. 

3.3.4 PROTECTION OF BACKUP DATA 

A write-protect setting is available to prevent data in the backup data area 
(banks 40H-7DH from being damaged. This setting protects data even in 
case of a CPU crash. 

3.3.5 CONTROL REGISTERS 

The Super MMC control registers are assigned to 2200H-23FFH of 
banks OOH-3FH and 80H-BFH. 

3.3.6 CAUTIONS 

Note that when the SA-1 Super MMC emulation function is used, the fol
lowing specifications for the Super MMC do not apply. 

3.3.6.1 HIGH SPEED MODE 

The SAS cannot use the Super NES CPU high-speed mode 
(3.58 MHz). 

3.3.6.2 ROM AND BACKUP RAM AREA 

The maximum mask ROM area is 64 Mbits. The maximum back
up RAM area is 2 Mbits. 

3.3.6.3 SHARED ROM MEMORY MAP 

The Super NES CPU and SA-1 CPU share a common ROM 
memory map. 

The ROM data in banks CXH, DXH, EXH, and FXH is identical 
(the same data is projected) for the Super NES CPU and SA-1 
CPU. However, the program can be executed in different banks 
for each processor. 

3.3.6.4 BACKUP RAM PROTECTION 

The image projected to Backup RAM is specified separately. 

The RAM data which is projected to the backup RAM image area 
in OOH-3FH and 80H-BFH can be specified separately for the 
Super NES CPU and SA-1 CPU. 

1-3-4 



SNES DEVELOPMENT MANUAL 

3.3.6.5 SA-1 I-RAM PRE-ASSIGNED 

SA-1 internal RAM (I-RAM) is assigned according to memory 
mapping. 

The I-RAM is assigned to 3000H-37FFH in banks OOH-3FH and 
80H-BFH during Super NES CPU access and to 3000H-37FFH 
and OOOOH-07FFH in banks OOH-3FH and 80H-BFH during 
SA-1 CPU access. 

3.4 VECTORS AND ROM-REGISTERED DATA 

Set the address for the Super NES CPU vectors and ROM-registered data to 
OO:7FBOH-OO:7FFFH. When set to this area, they are assigned to 
FFBOH-FFFFH in bank OOH at Super NES start-up. 

1-3-5 



SA-1 INTERNAL REGISTER CONFIGURA TION 

Chapter 4 SA-l Internal Register Configuration 

The SA-1 internal registers are assigned to addresses 2200H-23FFH in the Super NES 
CPU and SA-1 CPU banks 00H-3FH and 80H-BFH. Registers with addresses 22**H 
are write registers and those with addresses 23**H are read registers. 

4.1 EXPLANATION OF REGISTERS 

4.1.1 SA-1 CPU CONTROL (CCNT) 

Access: Super NES CPU Write 
Address: **2200H 
Size: 8 bits 
Initial value: 20H 

07 06 05 04 
SA-1 SA-1 SA-1 SA-1 
CPU CPU CPU CPU 
IRQ ROYB RESB NMI 

03 02 01 DO 

SMEG3 SMEG2 SMEG1 SMEGO 

SA-1 CPU IRQ: SA-1 CPU IRQ (from Super NES CPU) 
0: No Interrupt 
1: Interrupt 

SA-1 CPU ROY B: Ready 
0: Ready 
1: Wait 

SA-1 CPU RESB: SA-1 CPU reset 
0: Cancel 

SA-1 CPU NMI: 

1: Reset 

SA-1 CPU NMI (from Super NES CPU) 
0: No Interrupt 
1: Interrupt 

SMEGO-SMEG3: Message from Super NES CPU to SA-1 CPU 

1-4-1 

2200H 



SNES DEVELOPMENT MANUAL 

4.1.2 SUPER NES CPU INT ENABLE (SIE) 

Access: Super NES CPU Write 
Address: **2201 H 
Size: 8 bits 
Initial value: OOH 

07 06 05 04 03 02 01 00 

~1,_§~g_~~~1 __ 0 ___ 1_9_~_g_~_A~I __ 0~ ____ 0 __ ~_0 ______ 0 __ ~_0 ___ I 2201H 

SA-1 CPU IRQEN: IRQ enable/disable from the SA-1 CPU 
0: Oisable 
1: Enable 

CHOMA IRQEN: Character conversion OMA IRQ enable/disable 
0: Oisable 
1: Enable 

4.1.3 SUPER NES CPU INT CLEAR (SIC) 

Access: Super NES CPU Write 
Address: **2202H 
Size: 8 bits 
Initial value: OOH 

07 06 05 04 03 02 01 00 

I ~,_~~g~g_L~I __ 0 ___ 1_9_~~g~~~t~I __ 0~~~0 __ ~_0~~~0 __ ~_0~I 2202H 

SA-1 CPU IRQCL: IRQ clear from the SA-1 CPU 
0: No change 
1: Clear 

CHOMA IRQCL: Character conversion OMA IRQ clear 
0: No change 
1: Clear 

1-4-2 



SA-1 INTERNAL REGISTER CONFIGURA TlON 

4.1.4 SA-1 CPU RESET VECTOR (CRV) 

Access: Super NES CPU Write 
Address: **2203H, **2204H 
Size: 16 bits 
Initial value: Nonspecific 

07 06 05 04 03 02 

CRV7 CRV6 

SA-1 PU Rert vectl 

CRV5 CRV4 CRV3 CRV2 
SA-1 PU Reset Vector 

CRV15 CRV14 CRV13 CRV121 CRV111 CRV1 0 

4.1.5 SA-1 CPU NMI VECTOR (CNV) 

Access: Super NES CPU Write 
Address: **2205H, **2206H 
Size: 16 bits 
Initial value: Nonspecific 

07 06 05 04 03 02 
E A-1 cpr NMI Vector (Low) 

CNV7 CNV6 CNV5 CNV41cNV3 CNV2 
SA-1 CPU NMI Vector (Hi 

CNV141 CNV131 CNV121 CNV11 CNV15 

4.1.6 SA-1 CPU IRQ VECTOR (CIV) 

Access: Super NES CPU Write 
Address: **2207H, **2208H 
Size: 16 bits 
Initial value: Unspecified 

07 06 05 04 03 

~h) 

CNV10 

02 

01 00 

CRV1 CRVO 

CRV9 CRV8 

01 00 

CNV1 CNVO 

CNV9 CNV8 

01 00 
SA-1 C

1 

PU IRe Vector (Low) 

CIV7 CIV6 CIV5 CIV4 CIV3 CIV2 CIV1 CIVO 
SA-1 G1PU IRQ1vector High) 

CIV15 CIV14 CIV13 CIV12 CIV11 CIV10 CIV9 CIV8 

1-4-3 

2203H 

2204H 

2205H 

2206H 

2207H 

2208H 



SNESDEVELOPMENTMANUAL 

4.1.7 SUPER NES CPU CONTROL (SCNT) 

Access: SA-1 CPU Write 
Address: **2209H 
Size: 8 bits 
Initial value: OOH 

07 06 05 04 03 02 01 00 
SNES SNES 
CPU CPU 
IRQ IVSW 

Super NES 
CPU IRQ: 

Super NES 
CPU IVSW: 

Super NES 
CPU NVSW 

0 

SNES 
CPU 

NVSW CMEG3 CMEG2 CMEG1 CMEGO 

IRQ from SA-1 CPU to Super NES CPU 
0: No IRQ interrupt 
1: I RQ interrupt 

Super NES CPU IRQ vector selection 
0: Game pak ROM 
1: Super NES CPU IRQ vector register 

Super NES CPU NMI vector selection 
0: Game pak ROM 
1: Super NES CPU NMI vector register 

CMEGO-CMEG3: Message from SA-1 CPU to Super NES CPU 

1-4-4 

2209H 



SA-1 INTERNAL REGISTER CONFIGURA TION 

4.1.8 SA-1 CPU INT ENABLE (CIE) 

Access: SA-1 CPU Write 
Address: **220AH 
Size: 8 bits 
Initial value: OOH 

D7 D6 D5 D4 D3 D2 D1 DO 
SNES SNES 
CPU Timer DMA CPU 220AH 

IRQEN IRQEN IRQEN NMIEN 0 0 0 0 

Super NES 
CPU IRQEN: 

Timer IRQEN: 

DMA IRQEN: 

Super NES 
CPU NMIEN: 

IRQ control from Super NES CPU to SA-1 CPU 
0: Disable 
1: Enable 

I RQ control from timer to SA-1 CPU 
0: Disable 
1: Enable 

IRQ control to SA-1 CPU at end of SA-1 DMA 
0: Disable 
1: Enable 

NMI control from Super NES CPU to SA-1 CPU 
0: Disable 
1: Enable 

1-4-5 



SNES DEVELOPMENT MANUAL 

4.1.9 SA-1 CPU INT CLEAR (CIC) 

Access: SA-1 CPU Write 
Address: **220BH 
Size: 8 bits 
Initial value: OOH 

07 06 
SNES 
CPU Timer 

IROCL IROCL 

Super NES 
CPU IRQCL: 

Timer IRQCL: 

OMA IRQCL: 

Super NES 
CPU NMICL: 

05 04 03 02 01 00 
SNES 

DMA CPU 220BH 
IROCL NMICL 0 0 0 0 

IRQ clear from Super NES CPU to SA-1 CPU 
0: No change 
1: Clear 

I RQ clear from timer to SA-1 CPU 
0: No change 
1: Clear 

IRQ clear to SA-1 CPU at end of SA-1 OMA 
0: No change 
1: Clear 

NMI clear from Super NES CPU to SA-1 CPU 
0: No change 
1: Clear 

1-4-6 



SA-1 INTERNAL REGISTER CONFIGURA TION 

4.1.10 SUPER NES CPU NMI VECTOR (SNV) 

Access: SA-1 CPU Write 
Address: **220CH, **2200H 
Size: 16 bits 
Initial value: Nonspecific 

07 06 05 03 02 01 00 

220CH 
SNV7 SNVO 

2200H 
SNVa 

4.1.11 SUPER NES CPU IRQ VECTOR (SIV) 

Access: SA-1 CPU Write 
Address: **220EH, **220FH 
Size: 16 bits 
Initial value: Nonspecific 

07 06 05 03 02 01 00 
RQ Vector (Low 

220EH 
SIV7 SIV6 SIV1 SIVO 

220FH 
SIV15 SIV11 SIV10 SIV9 siva 

1-4-7 



SNES DEVELOPMENT MANUAL 

4.1.12 HN TIMER CONTROL (TMC) 

Access: SA-1 CPU Write 
Address: **2210H 
Size: 8 bits 
Initial value: OOH 

07 06 05 04 03 02 01 DO 

I J I 2210H 
~H_VS_E_L ____ O __ ~ __ O~~~O __ ~_O~~ __ O ____ V_E_N~_H_E_N __ _ 

HVSELB: 

VEN, HEN: 

Select HV timer 
0: HV Timer 
1: Linear Timer 

V count enable, H count enable 
00: Disable both H and V 
01: Enable H only: IRQ at H timer value 
10: Enable V only: IRQ at V timer value 
11: Enable both H and V: IRQ at H/V timer values 

4.1.13 SA-1 CPU TIMER RESTART (CTR) 

Access: SA-1 CPU Write 
Address: **2211 H 
Size: 8 bits 

Initial value: Nonspecific 

07 06 05 04 03 02 01 DO 

~ __ ~ ____ ~ __ ~ ____ ~ __ ~ ____ ~ __ ~ ____ ~I 2211H 

Writing any value to this register restarts the timer at O. 

1-4-8 



SA-1 INTERNAL REGISTER CONFIGURA TlON 

4.1.14 SET H-COUNT (HCNT) 

Access: SA-1 CPU Write 
Address: **2212H, **2213H 
Size: 16 bits 
Initial value: Nonspecific 

07 06 05 04 
H-Coun 

H7 H6 H5 H4 
H-Coun 

0 0 0 0 

03 02 
(Low) 

H3 H2 
(High) 

0 0 

HV timer: Timer IRQ H count value (0-340) 

01 00 

H1 HO 

0 Ha 

Linear timer: Lower 9 bits of the timer I RQ linear counter (0-511 ) 

4.1.15 SET V COUNT (VCNT) 

Access: SA-1 CPU Write 
Address: **2214H, -*2215H 
Size: 16 bits 
Initial value: Nonspecific 

07 06 05 04 
V-Coun 

V7 V6 V5 V4 
V-Coun 

0 0 0 0 

03 
(Low) 

V3 
(High) 

0 

HV timer: Timer I RQ V count value 

NTSC, 0-261 
PAL, 0-311 

02 01 00 

V2 V1 VO 

0 0 va 

Linear timer: Upper 9 bits of the timer I RQ linear counter (0-511 ) 

1-4-9 

2212H 

2213H 

2214H 

2215H 



SNES DEVELOPMENT MANUAL 

4.1.16 SET SUPER MMC BANK C (CXB) 

Access: Super NES CPU Write 
Address: **2220H 
Size: 8 bits 
Initial value: OOH 

07 06 05 04 03 02 01 00 

I I I 2220H 
~_C_BM _____ O~~_O~~~O~~_O ____ C_B_2 ___ C_B_1 ___ C_B_O~_ 

CBM: CXH Bank Image Projection 

1: CXH bank data is copied into addresses 
8000H-FFFFH of banks OXH-1 XH (shaded). 

0: The game pak ROM area CD is copied to ad
dresses 8000H-FFFFH of banks OXH-1 XH. 

FX EX DX ex BX AX 9X BX 7X 6X 5X 4X 3X 2X 1X OX FFFFH 

BOOOH 

OOOOH 

7F:FFFFH - - - - - - - - - ROM Area Selection (CBO-CB2) 
@ CB2 CB1 CBO ROM Area 
(j) 70:0000H r 
@ 

60:0000H 0 0 0 <D 

® 
50:0000H 0 0 1 ® 
40:0000H 

64 Mbit 0 1 0 @ 
@ 0 1 1 @ 

30:0000H 1 @ 1 0 0 ® 20:0000H 
® 1 0 1 ® 10:0000H - - - -
CD t 8 Mbit 1 1 0 

OO:OOOOH - - - - - - - . 
1 1 1 

1-4-10 



SA-1 INTERNAL REGISTER CONFIGURATION 

4.1.17 SET SUPER MMC BANK D (DXB) 

Access: Super NES CPU Write 
Address: **2221 H 
Size: 8 bits 
Initial value: 01 H 

07 06 05 04 03 02 01 DO 

I I I 2221H 
~0_BM~ ___ 0 _____ 0 _____ 0 _____ 0~~C_B_2~_C_B_1~_C_B_O~_ 

OBM: OXH Bank Image Projection 

1: OXH bank data is copied into addresses 
8000H-FFFFH of banks 2XH-3XH (shaded). 

0: The game pak ROM area (2) is copied to ad
dresses 8000H-FFFFH of banks 2XH-3XH. 

FX EX OX ex BX AX 9X 8X 7X 6X 5X 4X 3X 2X 1X OX FFFFH 

----18000H 

OOOOH 

7F:FFFFH - - - - - - - - - ROM Area Selection (CBO-CB2) 
@ CB2 CB1 CBO ROM Area 

70:0000H r 0 
0 0 0 CD 

@ 
60:0000H 

® 
50:0000H 0 0 1 ® 
40:0000H 

64 Mbit 0 1 0 @ 
@ 0 1 1 @ 

30:0000H 1 @ 1 0 0 ® 20:0000H 
® 1 0 1 ® 10:0000H T- -
CD 8 Mbit 1 1 0 OO:OOOOH - - - - - - - -

1 1 1 

1-4-11 



SNES DEVELOPMENT MANUAL 

4.1.18 SET SUPER MMC BANK E (EXB) 

Access: Super NES CPU Write 
Address: **2222H 
Size: 8 bits 
Initial value: 02H 

07 06 05 04 03 02 01 DO 

I I I 2222H 
~EB~M~ __ ~0~ __ ~0~ __ ~0~~~0~~C_B_2~~C_B_1~~C_B_0~" 

EBM: EXH Bank Image Projection 

1: EXH bank data is copied into addresses 
8000H-FFFFH of banks 8XH-9XH (shaded). 

0: The game pak ROM area ® is copied to ad
dresses 8000H-FFFFH of banks 8XH-9XH. 

FX EX OX ex BX AX 9X ax 7X 6X 5X 4X 3X 2X 1 X OX FFFFH 

1-------+-----1 aOOOH 

OOOOH 

7F:FFFFH "- - - - - - - " ROM Area Selection (CBO-CB2) 
® CB2 CB1 CBO ROM Area 
(j) 70:0000H r 
@ 

60:0000H 0 0 0 CD 

® 
50:0000H 0 0 1 ® 
40:0000H 

64 Mbit 0 1 0 @ 
@ 

0 1 1 @ 
30:0000H 1 @ 1 0 0 ® 20:0000H 

® 1 0 1 ® 10:0000H "f -" 
CD 8 Mbit 1 1 0 

OO:OOOOH" - - - - - - " 
1 1 1 

1-4-12 



SA-1 INTERNAL REGISTER CONFIGURATION 

4.1.19 SET SUPER MMC BANK F (FXB) 

Access: Super NES CPU Write 
Address: **2223H 
Size: 8 bits 
Initial value: 03H 

07 06 05 04 03 02 01 00 

I 2223H 
o 0 0 0 CB2 CB1 CBO 

----~----~----~~~~~--~~~~~~~~~ 
FBM 

FBM: FXH Bank Image Projection 

1 : FXH bank data is copied into addresses 
8000H-FFFFH of banks AXH-BXH (shaded). 

0: The game pak ROM area @ is copied to ad
dresses 8000H-FFFFH of banks AXH-BXH. 

FX EX DX ex BX AX 9X ax 7X 6X 5X 4X 3X 2X 1 X OX FFFFH 

1----;-----1 aOOOH 

OOOOH 

7F:FFFFH - - - - - - - - - ROM Area Selection (CBO-CB2) 
@ CB2 CB1 CBO ROM Area 

70:0000H r <V 
0 0 0 <D 

@ 
60:0000H 

@ 
50:0000H 0 0 1 ® 
40:0000H 

64 Mbit 0 1 0 @ 
@ 0 1 1 @ 

30:0000H 1 @ 1 0 0 ® 20:0000H 
® 1 0 1 ® 10:0000H -f --
CD 8 Mblt 1 1 0 OO:OOOOH - - - - - - - -

1 1 1 

1-4-13 



SNES DEVELOPMENT MANUAL 

4.1.20 SUPER NES CPU BW-RAM ADDRESS MAPPING (BMAPS) 

Access: Super NES CPU Write 
Address: **2224H 
Size: 8 bits 
Initial value: OOH 

07 06 05 04 03 02 01 00 

o o o I SBM41 SBM31 SBM21 SBM 1 I SBMO I 2224H 

SBMO-4: BW-RAM Address Image Mapping for Super NES 
CPU 

The BW-RAM image to be mapped to addresses 
6000H-7FFFH of banks 00H-3FH and 80H-BFH is 
user selectable from 00-1 F. 

FX ex BX AX 9X ax 7X 43 42 41 40 3X 2X 1X OX 

1F 17 OF 07 

1E 16 OE 06 

10 15 00 05 

1C 14 OC 04 

18 13 08 03 

1A 12 OA 02 

19 11 09 01 

18 10 08 00 

Select one 
from 00-1 F 

Note: The same image is mapped to all areas, (i.e., 
00:6000H-00:7FFFH, 01 :6000H-01 :7FFFH .... 
BF:6000H-BF:7FFFH). 

1-4-14 

FFFFH 

aOOOH 

6000H 

OOOOH 



SA-1 INTERNAL REGISTER CONFIGURA TION 

4.1.21 SA-1 CPU BW-RAM ADDRESS MAPPING (BMAP) 

Access: SA-1 CPU Write 
Address: **2225H 
Size: 8 bits 
Initial value: OOH 

07 06 05 04 03 02 01 DO 

ISW4SIcBMSIcBMSlcBM41cBM31cBM21cBM11cBMOl222SH 

CBMO-CBM6: 

SW46: 

BW-RAM Address Image Mapping for SA-1 CPU 

This selects the BW-RAM image to be mapped to 
the SA-1 CPU at addresses 6000H-7FFFH of banks 
00H-3FH and 80H-BFH. 

Specifies the BW-RAM source to be projected 
0: Banks 40H-43H are displayed in 32 

blocks using CBMO-CBM4. 
1 : Banks 60H-6FH are displayed in 128 

blocks using CBMO-CBM6. 

FX ex BX AX 9X BX 7X6F 60 43 42 41 40 3X 2X 1X OX 
FFFFH 

1 F 17 OF 07 

1 E 16 OE 06 

10 15 00 05 

1C 14 OC 04 
1---+--+---I--~~7'"""7""':~~'""7"i BOOOH 

1 B 13 OB 03 f-L-L-...L...L......c-..L-"-A-'t.....e......O'-"I 6000H 

1A 12 OA 02 

19 11 09 01 

18 10 08 00 

Select one from 00-7F 

Note: The same image is mapped to a" areas, (Le., 
00:6000H-00:7FFFH, 01 :6000H-01 :7FFFH .... 
BF:6000H-BF:7FFFH). 

1-4-15 



SNES DEVELOPMENT MANUAL 

4.1.22 SUPER NES CPU BW-RAM WRITE ENABLE (SBWE) 

Access: Super NES CPU Write 
Address: **2226H 
Size: 8 bits 
Initial value: OOH 

07 06 05 04 03 02 01 DO 

I~ __ ~I ____ ~ __ ~ __ ~~ __ ~~~-,--____ ~ __ ~I 2226H J3WEN 0 0 0 0 0 0 O. 

SWEN: Cancels BW-RAM write protection from Super NES 
CPU 

0: Protect 
1: Write enable 

4.1.23 SA-1 CPU BW-RAM WRITE ENABLE (CBWE) 

Access: SA-1 CPU Write 
Address: **2227H 
Size: 8 bits 
Initial value: OOH 

07 06 05 04 03 02 01 DO 

ICWENI 0 0 0 0 0 0 0 
I 2227H 

CWEN: Cancels BW-RAM write protection from SA-1 CPU 

0: Protect 
1 : Write enable 

1-4-16 



SA-1 INTERNAL REGISTER CONFIGURA TION 

4.1.24 BW-RAM WRITE-PROTECTED AREA (BWPA) 

Access: Super NES CPU Write 
Address: **2228H 
Size: 8 bits 
Initial value: FFH 

07 06 05 04 03 02 01 DO 

o o o o ! BWP3! BWP2! BWP1 ! Bwpol2228H 

BWPO-3: BW-RAM Write Protected Area Setting 

BW-RAM Write Protected Area 

BWP3 BWP2 BWP1 BWPO Area Size (bits) 

0 0 0 0 400000 - 4000FF 2K 

0 0 0 1 400000 - 4001 FF 4K 

0 0 1 0 400000 - 4003FF 8K 

0 0 1 1 400000 - 4007FF 16K 

0 1 0 0 400000 - 400FFF 32K 

0 1 0 1 400000 - 401 FFF 64K 

0 1 1 0 400000 - 403FFF 128K 

0 1 1 1 400000 - 407FFF 256K 

1 0 0 0 400000 - 40FFFF 512K 

1 0 0 1 400000 - 41 FFFF 1M 

1 0 1 0 400000 - 43FFFF 2M 

At start-up, all areas are write-protected. 

1-4-17 



SNES DEVELOPMENT MANUAL 

4.1.25 SA-1 I-RAM WRITE PROTECTION (SIWP) 

Access: Super NES CPU Write 
Address: **2229H 
Size: 8 bits 
I nitial value: OOH 

07 06 05 04 03 02 

SIWP7 SIWP6 SIWP5 SIWP4 SIWP3 SIWP2 

01 

SIWP1 

SIWPO-7: SA-1 I-RAM Write Protection Setting 

0: Write disable 
1 : Write enable 

SIWPO: Sets 3000H - 30FFH 
SIWP1: Sets 3100H - 31 FFH 
SIWP2: Sets 3200H - 32FFH 
SIWP3: Sets 3300H - 33FFH 
SIWP4: Sets 3400H - 34FFH 
SIWP5: Sets 3500H - 35FFH 
SIWP6: Sets 3600H - 36FFH 
SIWP7: Sets 3700H - 37FFH 

1-4-18 

SA-1 I-RAM 
37FFH 

3700H 

3600H 

3500H 

3400H 

3300H 

3200H 

3100H 

3000H 

@ 

(J) 

® 
® 
@ 

@ 

® 
CD 

00 

2229H 
SIWPO 

--------1 

16Kbit 



SA-1 INTERNAL REGISTER CONFIGURA TION 

4.1.26 SA-1 I-RAM WRITE PROTECTION (CIWP) 

Access: SA-1 CPU Write 
Address: **222AH 
Size: 8 bits 
Initial value: OOH 

07 06 05 04 03 02 

CIWP7 CIWP6 CIWP5 CIWP4 CIWP3 CIWP2 

01 00 

222AH 
CIWP1 CIWPO 

CIWPO ..... CIWP7: SA-1 I-RAM write protection setting 

0: Write disable 
1 : Write enable 

CIWPO: Sets 3000H ..... 30FFH 
OOOOH ..... OOFFH 

CIWP1: Sets 31 OOH ..... 31 FFH 
0100H ..... 01 FFH 

CIWP2: Sets 3200H ..... 32FFH 
0200H ..... 02FFH 

CIWP3: Sets 3300H ..... 33FFH 
0300H ..... 03FFH 

CIWP4: Sets 3400H ..... 34FFH 
0400H ..... 04FFH 

CIWP5: Sets 3500H ..... 35FFH 
0500H ..... 05FFH 

CIWP6: Sets 3600H ..... 36FFH 
0600H ..... 06FFH 

CIWP7: Sets 3700H ..... 37FFH 
0700H ..... 07FFH 

1-4-19 

07FFH 

0700H 

0600H 

® 
(J) 

0500H 

0400H 

® 
® 
@ 

0300H 

0200H 
@ 

0100H 
® 

OOOOH 
CD 

:::::- -------- -r-

3600H 

3500H 

3400H 

3300H 

3200H 

16Kbit 

3100H- -t -2Kbit 

3000H-----------



SNES DEVELOPMENT MANUAL 

4.1.27 DMA CONTROL (DCNT) 

Access: SA-1 CPU Write 
Address: **2230H 
Size: 8 bits 
Initial value: OOH 

D7 D6 D5 D4 D3 D2 D1 DO 

I~D~M~A~EN~I_D~pr~io~l~c~D~E~N~lc~D~S~E~L~I~o~~~D~D~~SD~1~~S~D~0~1 2230H 

DMAEN: 

DPrio: 

DD: 

SDO, SD1: 

SD1 

0 

0 

1 

CDEN: 

CDSEL: 

DMA Enable Control 

0: DMA disable 
1 : DMA enable 

Processing priority between SA-1 CPU and DMA 

0: SA-1 CPU priority 
1: DMA priority 

Destination device 

0: SA-1 I-RAM 
1: BW-RAM 

Sou rce Device 

SDO Device 

0 Game Pak ROM 

1 BW-RAM 

0 SA-1 I-RAM 

DMA mode selection 

0: Normal DMA 
1: Character conversion DMA 

Character conversion DMA type 

0: SA-1 CPU -7 SA-1 I-RAM write (CHR conv 2) 
1: BW-RAM -7 SA-1 I-RAM transfer (CHR conv 1) 

1-4-20 



SA-1 INTERNAL REGISTER CONFIGURATION 

4.1.28 CHARACTER CONVERSION OMA PARAMETERS (COMA) 

Access: SA-1 CPU/Super NES CPU Write 
Add ress: **2231 H 
Size: 8 bits 
Initial value: OOH 

07 06 05 04 03 02 01 DO 

l~c_HD_E_N~J~_o __ ~_0 __ ~I_s_lz_E_2~i_s_lz_E_1_i~S_I_z_E_0_i_c_B_1~_c_B_0~i 2231H 

CBO and CB1: 

SIZE 0-2: 

CHOENO: 

Character conversion OMA color mode 

CB1 CBO Character Format 

0 0 8 Bit/Dot 

0 1 4 Bit/Dot 

1 0 2 Bit/Dot 

1 1 ---------

Number of virtual VRAM horizontal characters 

SIZE2 SIZE1 SIZEO Number of Characters 

0 0 0 1 

0 0 1 2 

0 1 0 4 

0 1 1 8 

1 0 0 16 

1 0 1 32 

End character conversion 1 

When character conversion 1 is completed, 
CHOENO is set to "1" by the Super NES CPU. 

1-4-21 



SNES DEVELOPMENT MANUAL 

4.1.29 DMA SOURCE DEVICE START ADDRESS (SDA) 

Access: Super NES CPU/SA-1 CPU Write 
Address: **2232H - **2234H 
Size: 24 bits 
Initial value: Nonspecific 

D7 D6 D5 D4 D3 D2 

DSA7 

DSA-1 

D1 

DSAO-DSA23: DMA source device A start address 

DO 

2232H 
DSAO 

2233H 
DSA8 

2234H 

Data should be stored to the SDA registers in the order of Low ~ Middle 
~High. 

4.1.30 DMA DESTINATION START ADDRESS (DDA) 

Access: Super NES CPU/SA-1 CPU Write 
Address: **2235H - **2237H 
Size: 24 bits 
Initial value: Nonspecific 

D7 D6 D5 D4 D3 D2 D1 DO 

DMA CI>estinatioln Devic1e Start Address I(,LOW) 
2235H 

DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDAO 
DMA Destination Device Start Ac dress (Middle) 

I I 2236H 
DDA15 DDA14 DDA131 DDA121 DDA11 DDA10 DDA9 DDA8 

DMA C estination Device Start Address High) 

1 
I I 2237H 

DDA23 DDA22 DDA21 DDA201 DDA 19JDDA 18 DDA 17 DDA 16 

DDAO-DDA23: DMA destination device start address 

When transmitting to SA-1 I-RAM, DMA transfer is initiated by the write to 
register 2236H. 

When transmitting to BW-RAM, DMA transfer is initiated by the write to 
register 2237H. 

Data should be stored to the DDA registers in the order of Low ~ Middle 
-7 High. 

1-4-22 



SA-1 INTERNAL REGISTER CONFIGURA TION 

4.1.31 DMA TERMINAL COUNTER (DTC) 

Access: 
Address: 

SA-1 CPU Write 
**2238H, **2239H 

Size: 16 bits 
Initial value: Nonspecific 

07 06 05 04 
OMA rermina 

T7 T6 T5 T4 
OMA ermina 

T15 T14 T13 T12 

03 02 

counter (Low) 

T3 T2 
Counter (High) 

T11 I T10 

01 00 

2238H 
T1 TO 

2239H 
T9 T8 

TO-T15: Number of bytes (1 - 65535) for OMA transmission 

4.1.32 BW-RAM BIT MAP FORMAT (BBF) 

Access: 
Address: 

SA-1 CPU Write 
**223FH 

Size: 8 bits 
Initial value: OOH 

07 06 05 04 03 02 01 00 

I ~S_E_L_42~1 ________ ~ ____ ~ __ ~~ __ ~ _______ --~1 223FH 

SEL42: BW-RAM bitmap logical space format setting from 
the perspective of the SA-1 CPU 

0: 16 color mode (4 bits/dot) 
1 : 4 color mode (2 bits/dot) 

1-4-23 



SNESDEVELOPMENTMANUAL 

4.1.33 BIT MAP REGISTER FILE (BRF) 

Access: SA-1 CPU Write 
Address: **2240H - **224FH 
Size: 16 bytes 
Initial value: Nonspecific 

07 06 05 04 03 02 

BM07 BM06 

BiTap Re~ ister Fi'i 0 

BM05 BM04 BM03 BM02 
BiTap Re~ ister File 1 

BM131 BM12 BM17 BM16 BM15 BM14 

BM27 BM26 

BiTap Reqister Fi'i 2 

BM25 BM24 BM23 BM22 
Birap Re ~ister File 3 

BM37 BM36 BM35 BM34 BM33 I BM32 

BM47 BM46 

BiTap Reqister Fi'i 4 

BM45 BM44 BM43 BM42 

BM57 BM56 

Birap ReI 

BM55 BM54 

jister Fili 5 

BM53 BM52 

BM67 BM66 

BiTap Re~ ister File 6 

BM65 BM64 BM63 I BM62 

BM77 BM76 

BiTap Re~ ister Fi'i 7 

BM75 BM74 BM73 BM72 

Figure 1-4-4 Bitmap Register Files 0 - 7 

1-4-24 

01 00 

2240H 
BM01 BMOO 

2241H 
BM11 BM10 

2242H 
BM21 BM20 

2243H 
BM31 BM30 

2244H 
BM41 BM40 

2245H 
BM51 BM50 

2246H 
BM61 BM60 

2247H 
BM71 BM70 



SA-1 INTERNAL REGISTER CONFIGURA TION 

BiTap Re~ ister File 8 

BM83 I BM82 BM87 BM86 BM85 BM84 BM81 BM80 
2248H 

BiTap Re~ isler Fili 9 

BM97 BM96 BM95 BM94 BM93 BM92 BM91 BM90 
2249H 

BiTap Re~ ister File A 

BMA31 BMA2 BMA7 BMA6 BMA5 BMA4 BMA1 BMAO 
224AH 

BiTap Re~ isler Fi'i B 

BMB7 BMB6 BMB5 BMB4 BMB3 BMB2 BMB1 BMBO 
224BH 

BiTap Re£ isler Fi'i C 

BMC7 BMC6 BMC5 BMC4 BMC3 BMC2 BMC1 BMCO 
224CH 

BiTap Re~ ister File 0 

BMD31 BMD2 BMD7 BMD6 BMD5 BMD4 BMD1 BMOO 
224DH 

BiTap Re~ isler Fi'i E 

BME7 BME6 BME5 BME4 BME3 BME2 BME1 BMEO 
224EH 

BiTap R~,isler Fi'i F 
BMF7 BMF6 BMF5 BMF4 BMF3 BMF2 BMF1 BMFO 

224FH 

Figure 1-4-5 Bitmap Register Files 8 - FF 

BRFO - BRF7: Buffer 1 

BRF8 - BRFF: Buffer 2 

1-4-25 



SNES DEVELOPMENT MANUAL 

4.1.34 ARITHMETIC CONTROL (MCNT) 

Access: SA-1 CPU Write 
Address: **2250H 
Size: 8 bits 
Initial value: OOH 

D7 D6 D5 D4 D3 D2 D1 DO 

I 2250H 
~~O~ __ ~O~ __ ~O~~~O~~~O __ ~~O __ ~A~C_M~_M~/_D~. 

Types of MID and ACM arithmetic operations 

ACM MID TYPE OF OPERATION 

0 0 Multiplication 

0 1 Division 

1 0 Cumulative Sum 

NOTE: Store a "1" in ACM to clear the result register during cumulative 
sum operations. 

1-4-26 



SA-1 INTERNAL REGISTER CONFIGURA TION 

4.1.35 ARITHMETIC PARAMETERS: MULTIPLICAND/DIVIDEND (MA) 

Access: 
Address: 

SA-1 CPU Write 
**2251 H, **2252H 

Size: 16 bits 
Initial value: Nonspecific 

07 06 05 04 03 02 
Arithme ic Parameters: Multiplicand/Divi 

MA7 MA6 MA5 MA4 
Arithmetic Parameters: 

MAg ·MA8 

2251H 

2252H 

MAO-MA15: Multiplicand/Dividend setting (signed 16-bit data) 

The data contained in MAO .... MA 15 is saved even after it is acted upon. 
The register does not need to be reset, when used for multiplication. 
When used for division, however, the register must be reset each time. 

4.1.36 ARITHMETIC PARAMETERS: MULTIPLIER/DIVISOR (MB) 

Access: SA-1 CPU Write 
Address: **2253H, **2254H 
Size: 16 bits 
Initial value: Nonspecific 

07 06 05 04 03 02 01 DO 
Arithmetic Parameters: Multiplier/Divisor (Low) 

MB7 MBO 

MB15 MB8 

MBO-MB15: Multiplier/divisor setting 
• Signed data when used for multiplication 
• Unsigned data when used for division 

2253H 

2254H 

The arithmetic operation is executed following a write to register 2254H. 

The multiplier/divisor must be reset each time an operation is performed. 

1-4-27 



SNES DEVELOPMENT MANUAL 

4.1.37 VARIABLE-LENGTH BIT PROCESSING (VBO) 

Access: 
Address: 

SA-1 CPU Write 
**2258H 

Size: 8 bits 
Initial value: Nonspecific 

07 06 05 04 03 02 01 00 

I 2258H 
HL 0 0 0 VB3 VB2 VB1 VBO 

~~~--~~~--~~~~~~~~~~--~----

HL:

VBO-VB3:

VB3 VB2

0 0

0 0

0 0

0 0

0 1

0 1

0 1

0 1

1 0

1 0

1 0

1 0

1 1

1 1

1 1

1 1

Variable-length data read mode

1 : Auto-increment mode

0: Fixed mode

Significant !-:~ length of data previously stored

VBl VBO Data Length (bits)

0 0 16

0 1 1

1 0 2

1 1 3

0 0 4

0 1 5

1 0 6

1 1 7

0 0 8

0 1 9

1 0 10

1 1 11

0 0 12

0 1 13

1 0 14

1 1 15

1-4-28

SA-1 INTERNAL REGISTER CONFIGURA TION

4.1.38 VARIABLE-LENGTH BIT GAME PAK ROM START ADDRESS (VDA)

Access: SA-1 CPU Write
Address: **2259H-**225BH
Size: 24 bits
Initial value: Nonspecific

VAO-VA23: Game Pak ROM variable-length bit area start ad
dress setting.

Variable-length bit execution begins with a write to register 225BH.

1-4-29

SNES DEVELOPMENT MANUAL

4.1.39 SUPER NES CPU FLAG READ (SFR)

Access: Super NES CPU Read
Address: **2300H
Size: 8 bits

07 06 05 04 03
SA-1
CPU CHDMA
IRQ IVSW IRQ NVSW CMEG3

02

CMEG2

SA-1 CPU IRQ: IRQ flag from SA-1 CPU
0: No IRQ
1: IRQ

01

CMEG1

IVSW: Super NES CPU IRQ vector setting
0: Game pak ROM data
1 :SIV register data

CHOMA IRQ: Character conversion OMA IRQ flag
0: No IRQ

00

2300H
CMEGO

1: I RQ (character conversion 1 stand-by)

NVSW: Super NES CPU NMI vector setting
0: Game pak ROM data
1: SNV register data

CMEGO-CMEG3: Message port from SA-1 CPU: 0-15

NOTE: Reading this register does not clear its contents.

1-4-30

SA-1 INTERNAL REGISTER CONFIGURA TION

4.1.40 SA-1 CPU FLAG READ (CFR)

Access: SA-1 CPU Read
Address: **2301 H
Size: 8 bits

07 06 05 04
SNES SNES
CPU Timer DMA CPU

03 02 01

IRQ IRQ IRQ NMI SMEG3 SMEG2 SMEG1

Super NES
CPU IRQ:

Timer IRQ:

OMA IRQ:

Super NES
CPU NMI:

IRQ flag from Super NES CPU
0: No IRQ
1: IRQ

IRQ flag from timer.
0: No IRQ
1: IRQ

I RQ flag at the end of OMA
0: No IRQ
1: IRQ (end of OMA)

NMI flag from Super NES CPU
0: No NMI
1: NMI

DO

SMEGO

SMEGO-SMEG3: Message port from Super NES CPU: 0-15

NOTE: Reading this register does not clear its contents.

1-4-31

2301H

SNES DEVELOPMENT MANUAL

4.1.41 H-COUNT READ (HCR)

Access: SA-1 CPU Read
Address: **2302H, **2303H
Size: 16 bits

07 06 05 04 03

H7 H6

Timer H-COUr Read

H5 H4 H3

-- --
T~~el H-~oUT R:~d

HO-Ha:

D2 01 00
Low)

H2 H1 HO
High)
I

-- Ha

HV timer:H-count (dots,0-340) read

2302H

2303H

Linear timer: Lower 9-bit count (0-511) read

All HV counter values are latched when register 2302H is read.

4.1.42 V-COUNT READ (VCR)

Access: SA-1 CPU Read
Address: **2304H, **2305H
Size: 16 bits

07 06 05 04 03

V7 V6

Timer v-cour Read

V5 V4 V3

-- --
Time, V-Count Read

-- -- I --
VO-VB:

D2 01
Low)

V2 V1
High)

I -- --

HV timer:V-count (lines) read
NTSC, 0-261
PAL, 0-311

00

VO

va

2304H

2305H

Linear timer: Upper 9-bit counter value (0-511)
read

1-4-32

SA-1 INTERNAL REGISTER CONFIGURA TION

4.1.43 ARITHMETIC RESULT [PRODUCT/QUOTIENT/ACCUMULATIVE SUM] (MR)

Access: 8A-1 CPU Read
Address: **2306H - **230AH
8ize: 40 bits

07 06 05 04 03 02 01 DO
Rea Arithmetic Result (product/quotient/cumulative sum) WO

2306H
07
Rea

2307H
015 014 013 012 08
Read Arithme ic Resu t (product/remainder/cumulative sum) W

031

039 038

00-039:

2308H

2309H
024

230AH
035 034 033 032

Arithmetic result
Multiplication: 16 (8) x 16 (8) = 32 (8) ... 00-031
Division: 16 (8) 16 (U) = 16 (8) ... 00-015

Remainder: 16 (U)
... 016-031
Cumulative 8um: 2,(16 (8) x 16 (8)) = 40 (8)
... 00-039

1-4-33

SNESDEVELOPMENTMANUAL

4.1.44 ARITHMETIC OVERFLOW FLAG (OF)

Access: SA-1 CPU Read
Address: **230BH
Size: 8 bits

07 06 05 04 03 02 01 DO

~O~F ______ ~ __ ~~ __ ~ ____ ~ __ ~ ____ ~_--~I 230BH

OF: Overflow flag
1: Overflow
0: No overflow

4.1.45 VARIABLE-LENGTH DATA READ PORT (VDP)

Access: SA-1 CPU Read
Address: **230CH, **2300H
Size: 16 bits

07 06 05 04 03 DO

230CH
V07 VOO

2300H
V015 V014 V09 V08

VOO-V015: The 16-bit data resulting from barrel-shifting the val
ues stored in the VBO register (**2258H).

1-4-34

4.1.46

SA-1 INTERNAL REGISTER CONFIGURATION

VERSION CODE REGISTER {V C)

Access: Super NES CPU Read
Address: **230EH
Size: 8 bits

07 06 05 04 03 02 01 DO

VC2 VC7 VC6 VC5 VC4 VC3 VC1 I 230EH
VCO

~~----~~--~~~--~~~----~--~~--~

VCO - VC7: SA-1 Device Version

1-4-35

SNES DEVELOPMENT MANUAL

ChapterS Multi-Processor Processing

5.1 MULTI-PROCESSOR SYSTEM

The Super Accelerator System (SAS) is a multi-processor system in which two
MPUs (the Super NES CPU and the SA-1 CPU) operate in parallel. The Super
NES CPU performs as the main processor, controlling execution of the SA-1
CPU. The SA-1 CPU cannot control Super NES CPU operations. This main/sub
relationship is a hardware arrangement. Software can be used to manipulate flags
and interrupts to use the faster SA-1 CPU as the main processor.

5.2 STARTING AND STOPPING THE SA-1 CPU

When power is applied to the Super NES control deck or its reset button is
pressed, the SA-1 CPU is placed in its "stop" state. The Super NES CPU manipu
lates SA-1 internal registers to start and stop the SA-1 CPU as directed by soft
ware.

5.2.1 STARTING THE SA-1 CPU

The Super NES CPU sets the SA-1 CPU program start address into the
RV register (2203H, 2204H) and resets the SA-1 CPU RES bit of the
CCNT register (2200H) to "0" to initiate SA-1 CPU processing from the
address set in the RV register.

5.2.2 STOPPING THE SA-1 CPU

When the Super NES CPU sets the SA-1 CPU RES bit of the CCNT reg
ister (2200H) to "1", the SA-1 CPU stops processing and is placed in stop
status.

1-5-1

MUL T/-PROCESSOR PROCESSING

5.3 MPU HANDSHAKES

Because the Super NES CPU and SA-1 CPU collaborate in processing programs,
the SAS defines the following handshakes between the two MPUs.

5.3.1 INTERRUPTS

The Super NES CPU and SA-1 CPU can each transmit interrupts such as
IRQ and NMI to each other, as listed in the following table.

Interrupt Direction Register Set
type

IRQ S-7C CCNT (2200H), SA-1 CPU IRQ bit = 1

NMI S-7C CCNT (2200H), SA-1 CPU NMI bit = 1

IRQ C-7S SCNT (2209H), Super NES CPU IRQ bit = 1

NMI C-7S Not possible

Table 1-5-1 Types of Interrupts

An NMI interrupt cannot be sent from the SA-1 CPU to the Super NES
CPU.

The MPU being interrupted identifies the source of the interrupt and
clears the interrupt when the source is the other MPU.

Interrupt Direction Interrupt Clear Register
type Identification

IRQ S-7C CFR (2301 H) CIC (220BH)
Super NES CPU IRQ Super NES CPU
bit IRQCL bit=1

NMI S-7C CFR (2301 H) CIC (220BH)
Super NES CPU NMI Super NES CPU NM:I
bit CL bit =1

IRQ C-7S SFR (2300H) SIC (2202H)
SA-1 CPU IRQ bit SA-1 CPU IRQCL bit

= 1

Table 1-5-2 Interrupt Identification and Clear

1-5-2

SNES DEVELOPMENT MANUAL

To temporarily block interrupts, they can be masked in an MPU.

Interrupt Direction Mask Register
Type

IRQ S~C CIE (220AH), Super NES CPU IRQEN bit = 0

NMI S~C CIE (220AH), Super NES CPU NMIEN bit = 0

IRQ C~S SIE (2202H), SA-1 CPU IRQEN bit = 0

Table 1-5-3 Interrupt Mask

A masked interrupt becomes active after the mask is cancelled. To pre
vent this interrupt when the mask is cancelled, the programmer may use
the interrupt identification registers, described in the table on the previous
page, to identify an interrupt, then clear that interrupt before cancelling
the mask.

5.3.2 MESSAGE

A four-bit message can be sent along with an interrupt signal between the
MPUs, as described in the table below.

Interrupt Direction Register Sending Register Receiving
Type the Message the Message

IRQ S ~C CCNT (2200H), SFR (2300H)
SMEGO-3 CMEGO-3

NMI S ~C CCNT (2200H) SFR (2300H)
SMEGO-3 CMEGO-3

IRQ C ~S SCNT (2209H) CFR (2301 H)
CMEGO-3 SMEGO-3

Table 1-5-4 Sending and Receiving a Message

1-5-3

MUL TI-PROCESSOR PROCESSING

5.4 SHARED MEMORY

Since SA-1 I-RAM can be accessed by both MPUs, a section of the SA-1 I-RAM
can be used as a command exchange window. This window can be used in lieu of
an interrupt to perform a handshake between the two MPUs. It also allows more
command information to be sent than is possible with a "message", described pre
viously. The size of shared memory in SA-1 I-RAM can be assigned by each pro
gram.

The SA-1 has a collision-control circuit for memory access, so that simultaneous
read/write access by both MPUs does not cause any problems. If simultaneous
access does occur, the Super NES CPU has priority access and the SA-1 CPU is
put on hold.

The BW-RAM also has an area assigned to joint access and can be used as
shared memory as well. However, it is generally best to use SA-1 I-RAM due to
the RAM access speed (operating speed) and because BW-RAM cannot be used
during character conversion DMA.

5.5 VECTOR SWITCHING

Parts of the Super NES CPU and SA-1 CPU vectors are registers in the SAS. This
permits situation dependant multiple routines to be used. For example, interrupt
processing can be expedited by preparing multiple IRQ routines in advance and
setting the IRQ interrupt destination address in response to game situations.

Vectors which can be specified in registers include the following.

Vector Type Destination Setting Valid/Invalid Selection Bits

Super NES CPU SNV (220CH, 220DH) SCNT Super NES CPU
NMI NVSW bit

Super NES CPU SIV (220EH, 220FH) SCNT Super NES CPU
IRQ IVSW bit

SA-1 CPU reset CRV (2203H, 2204H) Always valid

SA-1 CPU NMI CNV (2205H, 2206H) Always valid

SA-1 CPU IRQ CIV (2207H, 2208H) Always valid

Table 1-5-5 Situation Dependant Vectors

When the Super NES CPU register setting vector is set to invalid, the program
jumps to the address indicated in ROM.

1-5-4

SNES DEVELOPMENT MANUAL

5.6 SA-1 CPU CORE

The SA-1 core CPU is the same 16-bit CPU (65C816) used in the Super NES
CPU and can execute all the Super NES instructions. The differences between
the SA-1 CPU and Super NES CPU cores are as follows:

5.6.1 VECTORS

The reset, NMI, IRQ and other vectors registered in the M-ROM are for
the Super NES CPU. The SA-1 CPU vectors must be set separately. The
SA-1 CPU vectors should be set in the following registers using the Su
per NES CPU.

Reset vector:

NMI vector:

IRQ vector:

Other vectors:

5.6.2 SA-1 CPU WAIT

RV (2203H, 2204H)

CNV (2205H, 2206H)

CIV (2207H, 2208H)

Same as the Super NES CPU (M-ROM
data)

The SA-1 CPU operates at 10.74 MHz, but a wait cycle may be intro
duced when some commands and functions are executed, or when it is
accessed by the Super NES CPU. This happens when:

1 . the following instructions are executed:

RTS, RTI, RTL, JMP (a), JML (a), JMP a, JMP ai, JMP (a,x), JSR
(a,x), JSR a, JSL ai, BRA cop

2. the destination address of the following commands is odd:

BPL, BMI, BVC, BVS, BRA, BCC, BCS, BNE, BEQ, BRL

3. data is read from Game Pak ROM or BW-RAM.

4. the SA-1 CPU, Super NES CPU or the Super NES CPU's DMA access
the same device (Game Pak ROM, BW-RAM, or SA-1 I-RAM) simulta
neously.

5. the BW-RAM write buffer is full when writing to BW-RAM.

6. the source of the SA-1 DMA transmission is Game Pak ROM

1-5-5

MUL TI-PROCESSOR PROCESSING

5.7 OPERATION MODES

The SA-1 does not have special registers for setting the operation mode. The Su
per NES CPU is always in program execution state and controls the SA-1 CPU
operations (start and stop).

The remainder of this chapter introduces representative relationships between the
Super NES CPU and SA-1 CPU operations. They are examples and do not repre
sent the entire SAS operation modes.

5.7.1 ACCELERATOR MODE

In the accelerator mode, the SA-1 CPU is used only to handle the high
load part of the program as subroutines. While the SA-1 CPU is process
ing, the Super NES CPU waits, in a loop, for the end of this processing.
When the SA-1 CPU finishes processing, it informs the Super NES CPU
by an interrupt, as illustrated below.

OPERATION W/SA-1 PREVIOUS OPERATION
Super NES

CPU
Super NES SA-1 CPU

CPU

Figure 1-5-1

t-------1------------
Process

A

Process
E

Accelerator Mode

"
, ,

1-5-6

Process
A

Wait

Process
C

Wait

Process
E

Start

...
IRQ

Start ~

...
IRQ

Idle

~ilil~~~~l~;~M*l}iwJ.ll*~nl~
Process:

B

Idle

Process
D

SNES DEVELOPMENT MANUAL

In the accelerator mode, the process flow is like a single-thread and it is
easy to avoid programming errors. This mode is suitable for utilizing the
speed of SA-1 without much complexity. On the other hand, it is not very
efficient due to MPU stop and loop time.

5.7.2 PARALLEL PROCESSING MODE

The parallel processing mode is a multi-processing mode in which both
MPUs are operating simultaneously and are synchronized by hand
shakes. Both MPUs can freely access memory thanks to the SA-1 's auto
matic collision control.

The handshake between MPUs is achieved by using interrupt signals and
shared memory.

The SA-1 CPU can process the program while the Super NES CPU is
processing the multi-use DMA, as demonstrated below.

OPERATION W/SA-1 PREVIOUS OPERATION
Super NES

CPU SU~~~ES SA-1 CPU

Figure 1-5-2

Process
A

Process
E

Parallel Processing Mode

1-5-7

Process
A

Process
C

Process
E

Process
D

MUL TI-PROCESSOR PROCESSING

In the parallel processing mode the highest processing efficiency can be
achieved, as both MPUs operate without waiting for one anther. Howev
er, the process flow is complicated and more care must be taken to avoid
programming errors, unsuccessful handshakes, and crashes.

5.7.3 MIXED PROCESSING MODE

In the mixed processing mode, the SA-1 CPU can be used as a Super
NES CPU accelerator during parallel processing in the parallel process
ing mode. In the SA-1, an operation mode is nothing more than program
architecture, therefore, this type of processing is possible.

OPERATION W/SA-1 PREVIOUS OPERATION
Super NES

CPU Su~~~ES SA-1 CPU

Figure 1-5-3

Process
A

Process
E

Mixed Processing Mode

1-5-8

Process
A

Part of
Process

C

Wait

Continue
Process

C

Process
E

Start

IRQ Process
B

Process
o

SNES DEVELOPMENT MANUAL

5.8 OPERATING MODES AND PROCESSING SPEEDS

The operating speed of the SA-1 CPU in each of the SA-1 operating modes is as
follows.

SA-1 SA-1 CPU Memory Super NES Memory
Operation Operating Used by SA- CPU Used by
Mode Speed 1 CPU Operations Super NES

CPU

Accelerator 10.74MHz Game Pak Loop WRAM
ROM program
SA-1 I-RAM

10.74MHz Game Pak Multi- Other than
ROM purpose Game Pak

DMA RAM
Parallel

10.74MHz SA-1 I-RAM Multi- Other than Processing
purpose SA-1 I-RAM
DMA

5.37MHz Game Pak Multi- Game Pak
ROM purpose ROM

DMA

5.37MHz Game Pak Normal Game Pak
ROM operations ROM

10.74MHz SA-1 I-RAM Normal Game Pak
operations ROM

10.74MHz Game Pak Normal WRAM
ROM operations
SA-1 I-RAM

Table 1-5-6 Operating Modes and Processing Speeds

1-5-9

CHARACTER CONVERSION

Chapter 6 Character Conversion

6.1 INTRODUCTION TO CHARACTER CONVERSION

The SA-1 contains a function for converting VRAM data stored in virtual bitmap
format on BW-RAM and SA-1 I-RAM to Super NES PPU character format VRAM
data.

Rotation, enlargement, and reduction of screen data and 3-D displays, such as
polygons, are performed readily when the data is stored in bitmap format. Data
compression can also be done more efficiently when the data to be compressed is
stored in bitmap format.

6.1.1 BITMAP FORMAT

"Bitmap format" refers to a data format where one address is assigned to
each pixel (dot) on the screen. The SA-1 uses byte-long addresses. The
effective data length is 2 bits in the 4 color mode and 4 bits in the 16 color
mode. The remaining bits in the byte are ignored.

The Super NES PPU is incapable of directly processing bitmap data. The
SA-1 includes a function which converts bitmap data to Super NES PPU
character formatted data using DMA.

6.2 CHARACTER CONVERSION FUNCTIONS

The SA-1 has two character conversion functions for converting bitmap data to
character data (Character Conversion 1 and Character Conversion 2).

6.2.1 CHARACTER CONVERSION 1

Character Conversion 1 sends bitmapped data contained on BW-RAM to
the VRAM of the Super NES PPU and displays it on the screen by simul
taneously performing the DMA function in the SA-1 and Super NES gen
eral purpose DMA, as demonstrated below.

Super NES
Bitmap General
formatted SA-1 CHR formatted Purpose CHR formatted ... screen data .. screen data screen data DMA - -

SA-1 I-RAM Internal buffer DMA VRAM
BW-RAM

+ +
L DMAs occur simultaneously I

Figure 1-6-1 Character Conversion 1

1-6-1

SNES DEVELOPMENT MANUAL

Character conversion 1 uses the buffer area in SA-1 I-RAM to convert
and transmit data to the VRAM of the Super NES PPU. The buffer can be
a maximum of 128 bytes (256 color mode) or 32 bytes minimum (4 color
mode).

6.2.2 CHARACTER CONVERSION 2

Character conversion 2 is used when the bitmap data is in SA-1 I-RAM or
game pak ROM, or when the game pak is configured without BW-RAM,

Bitmap
formatted SA-1 Buffer
screen data -- Registers Transmitted BW-RAM
SA-11-RAM lAW SA-1
Game Pak ROM CPU

Instructions

Figure 1-6-2 Character Conversion ~

1-6-2

... -
Converted
automatically
followin g
register write

CHR formatted
screen data
SA-1 I-RAM work area

CHARACTER CONVERSION

6.3 BITMAP ACCESS

The bitmap data storage area (virtual VRAM) is normally assigned to BW-RAM.
Bitmap data is compressed (packed) and stored in BW-RAM as illustrated below.

4 Color Mode Pixel Pixel Pixel Pixel 4 Pixel/Byte

16 Color Mode Pixel Pixel 2 Pixel/Byte

256 Color Mode
Pixel 1 Pixel/Byte

b7 I b6 b5 b4 I b3 b2 b1 bO
1 Byte

Figure 1-6-3 Compressed Bitmap Data

6.3.1 BW-RAM IMAGE PROJECTION

Within the SA-1 , the BW-RAM image is projected into 6 x H banks in the SA-1
CPU's memory map. When BW-RAM is accessed in these 6 x H banks, it can be
accessed at one pixel per byte in either the 4 color or 16 color modes.

Figure 1-6-4 Bitmap Image Projection

1-6-3

43H 40H

BW-RAM
Area

Packed
Access

FFFFH

OOOOH

SNES DEVELOPMENT MANUAL

For 64 Kbit BW-RAM:
BW-RAM Bitmap (16 color) / Bitmap (4 color)
40:0000H ... 40: 1 FFFH ~ 60:0000H ... 60:3FFFH 60:0000H ... 60:7FFFH

For 256 Kbit BW-RAM:
BW-RAM Bitmap (16 color) / Bitmap (4 color)
40:0000H ... 40:7FFFH ~ 60:0000H ... 60:FFFFH 60:0000H ... 61 :FFFFH

For 2 Mbit BW-RAM:
BW-RAM Bitmap (16 color) / Bitmap (4 color)
40:0000H ... 43:FFFFH ~ 60:0000H ... 67:FFFFH 60:0000H ... 6F:FFFFH

In the 256 color mode, the bitmap data is copied directly on the BW-RAM area.

1-6-4

CHARACTER CONVERSION

6.3.2 BW-RAM DATA EXPANSION

The compressed BW-RAM data is expanded sequentially and assigned
from address 60:0000H. This is demonstrated in the figure below. All ar
eas of BW-RAM are expanded during this operation and no special regis
ter is provided for designating the expanded area. Therefore, when only a
partial area of BW-RAM is used for virtual VRAM, the bitmap area corre
sponding to the area assigned as virtual VRAM must be accessed.

16 Color Mode b7 b6 b5 b4 b3 b2 b1 bO

~ SO:OOOOHVWI;1 031021011 Dol 40:0000H I
b4 I b3 bO I b7 b6 b5 b2 b1 Ignored

I 07 1 Osl 05 1 04 1 031 021 01 I 001
I I b7 b6 b5 b4 b3 b2 b1 bO

I SO:OOO1HVWI;1 071 Osl 051 041 ~

Ignored

b7 b6 b5 b4 b3 b2 b1 bO

--. SO:OOOOHVWW!;1 011 Dol
Ignored

4 Color Mode b7 b6 b5 b4 b3 b2 b1 bO

I 40:0000H SO:0001H VWWlI1 031 021
b7 b6 b5 b4 1 b3 b2 II b1 bO I

I 07 1 06 1 05 1 04 1 031 021 01 1 001
Ignored

b7 b6 b5 b4 b3 b2 b1 bO

I II
SO:0002HVWW!;1 051 041

I
I ~

Ignored

b7 b6 b5 b4 b3 b2 b1 bO

... SO:0003HVWW!;1 071 Osl -
Ignored

Figure 1-6-5 Bitmap Data Expansion

The color mode of the bitmap access area is set in bit SEL42 of the BBF
register (223FH).

SEL42 = 0: 16 color mode

SEL42 = 1 : 4 color mode

1-6-5

SNES DEVELOPMENT MANUAL

The bitmap area is configured as follows.

Ui'
(5
"0

g
Q)
N

CiS
(tj
()

t
Q)

>
::2 « a:
>

Figure 1-6-6

VRAM Horizontal Size (n dots)
I~

- - - - - - - ...--------,
x x+1 x+2 x+3 x+n-1

-------t------;

x+n x+n+1 x+n+2 x+n+3 x+2n-1
- - - - - - - t-------f

x+2n x+2n+1 x+2n+2 x+2n+3 x+3n-1
- - - - - - - t--------I

L..--___ '---___ '---___ '---__ -----'- _______ I x+mn-1

Memory Addresses for the Bitmap Area

The variable "x" indicates the start address of the bitmap area in virtual
VRAM. The variable "n" is the horizontal size (dots) of VRAM and "m" is
the vertical size (dots) of VRAM. Variable "n" can be specified in bits
SIZEO-2 of the COMA register (2231 H), as demonstrated below. No reg
ister is provided for specifying vertical size "m". Vertical size can be set
within the limits of BW-RAM size as a function of internal program logic.
Variable "m" is processed in character units and must be a multiple of
eight.

SIZEO SIZE1 SIZE2 Horizontal Character Number

.0 0 0 1 (8 dots)

0 0 1 2 (16 dots)

0 1 0 4 (32 dots)

0 1 1 8 (64 dots)

1 0 0 16 (128 dots)

1 0 1 32 (256 dots)

Table 1-6-1 Horizontal Size of VRAM (COMA Register)

1-6-6

CHARACTER CONVERSION

6.4 CHARACTER CONVERSION 1, DETAILED DESCRIPTION

Character conversion 1 is used to convert the bitmap screen data in BW-RAM to
Super NES PPU character formatted VRAM data, with SA-1 DMA and Super NES
general purpose DMA working in parallel. A larger volume of data can be convert
ed at one time with character conversion 1 than with character conversion 2, due
to efficient usage of both DMAs.

Character conversion 1 requires two characters of memory space in SA-1 I-RAM
for use as buffers (work space). The required I-RAM size is 32 bytes in the 4 color
mode, 64 bytes in the 16 color mode, and 128 bytes in the 256 color mode. Any 1-
RAM address can be specified by the user.

Character conversion 1 uses these two buffers to read the data from BW-RAM to
VRAM in parallel. Since the processing speed is determined by the speed of the
Super NES CPU's general purpose DMA, the same amount of characters can be
converted as with the Super NES, alone.

BW-RAM SA-1 I-RAM VRAM

Bitmap Data ~ Character
~ Buffer 1

Conversion
DMA

Character
Buffer 2 I-_~ Character

Data

BW-RAM

'--------' General
Purpose DMA

After one character is completed.

SA-1 I-RAM

Character
Buffer 1

~-----' General
Purpose DMA

~ Character
Bitmap Data ~ Buffer 2

Conversion
DMA

Figure 1-6-7 Character Conversion Buffers

1-6-7

t
VRAM

Character
Data

SNES DEVELOPMENT MANUAL

6.5 CHARACTER CONVERSION 1 PROGRAMMING PROCEDURE

When character conversion 1 is used, the user must carefully coordinate register
settings in the Super NES CPU and SA-1 CPU. The following procedure is provid
ed to aid the user in coordinating these settings.

STEP 1. Set DCNT (2230H) using the SA-1 CPU.

CDEN bit = 1 (character conversion enable)

CDSEL = 1 (BW-RAM to SA-1 I-RAM transmission)

NOTE: The registers indicated in the following steps are set using the
Super NES CPU.

STEP 2. Specify the SA-1 OMA transmission source address using the Super
NES CPU.

Store the transmission source address (BW-RAM) in SOA
(2232H-2234H).

A specific number of low bit of the address must be set to "0",
as a function of the color mode and the number of horizontal
characters set in SIZEO-2 of CDMA (2231 H). The specific
number of "0" bits can be determined from the table below.

Color Mode 4 4 4 4 4 4 16 16 16 16 16 16 256 256 256 256 256 256
Number of
Horizontal 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32
Characters
Zero Bits 4 5 6 7 8 9 5 6 7 8 9 10 6 7 8 9 10 11

Table 1-6~2 Number of Zero Bits in BW-RAM

STEP 3. Set COMA (2231 H) using the Super NES CPU.

Store the color mode (4, 16, or256) in CBO and CB1.

Store the number of virtual VRAM horizontal characters in
SIZEO-2.

STEP 4. Specify the SA-1 I-RAM address for the buffers as the transmission
destination.

NOTE:

Store the buffer address in DOA (2235H and 2236H).

It is not necessary to set 2237H because I-RAM is specified.

The lowest 5 bits of the I-RAM address must all be "0" for 4 col
or mode. The lowest 6 bits of the I-RAM address must be "0"
for 16 color mode. And, the lowest 7 bits of the I-RAM address
must be "0" for 256 color mode.

1-6-8

CHARACTER CONVERSION

STEP 5. Wait for the IRQ (CHRIRQ) generated from SA-1 to the Super NES
CPU.

The Super NES CPU waits for the IRQ and verifies that the
CHROMA IRQ bit of the SFR register (2300H) = 1 (character
conversion 1 OMA standby). I RQ is generated for some other
reason when CHROMA IRQ = O.

STEP 6. Transmit the character data in SA-1 I-RAM to VRAM.

Character data which has been converted by the Super NES
CPU's general purpose OMA is transmitted to VRAM. Set the
general purpose OMA source address to the start address of
the virtual VRAM in BW-RAM.

STEP 7. Use the Super NES CPU to notify the SA-1 that the conversion is
complete.

Set bit CHOEND of the COMA register (2231 H) to "1" to indi
cate that one cycle of character conversion 1 has been com
pleted and return control of register access to the SA-1 CPU.

When necessary, use an IRQ or SA-1 I-RAM to notify the SA-1 CPU of the end of -
character conversion.

Using the above procedure, the SA-1 internal character conversion circuit con
verts characters in order based upon the request from the Super NES CPU's
OMA.

The SA-1 CPU can return to program processing after STEP 1 has been per
formed, however, it must wait during any simultaneous access to BW-RAM or SA!
I-RAM as OMA has priority.

Although COMA, OOA, and SOA are SA-1 CPU registers, they are set by the Su
per NES CPU when using character conversion 1. The user should not access
BW-RAM from the Super NES CPU during these operations. SA-1 I-RAM can be
accessed by the user through the Super NES CPU, so flags can be changed with
in the SA-1 CPU.

1-6-9

SNES DEVELOPMENT MANUAL

6.6 CHARACTER CONVERSION 2, DETAILED DESCRIPTION

Character conversion 2 performs character conversion by writing bitmap data to
the SA-1 registers according to the SA-1 CPU's program. Because the transmis
sion is controlled by the SA-1 CPU's program, the memory for bitmap data expan
sion can be set up more freely than when using character conversion 1. Also,
when the game pak configuration does not include BW-RAM, character conver
sion 2 is the only means of character conversion.

The bitmap data when using character conversion 2 is one pixel/byte (unpacked).
As previously described, packed data cannot be converted. Therefore, bits b7
b2 of the data are invalid in the 4 color mode. Similarly, b7 b4 are invalid in the
16 color mode. All bits are valid in the 256 color mode.

The table below shows the actual data in memory. When the bitmap access func
tion is used with character conversion 1, one pixel/byte access is possible.

Bitmap Data Format

4 Color Mode 16 Color Mode

Character Conversion 1 4 Pixel/Byte 2 Pixel/Byte

Character Conversion 2 1 Pixel/Byte 1 Pixel/Byte

Table 1-6-3 Character Conversion and Data Format

Character conversion 2 also requires buffers for two characters in SA-1 I-RAM,
similar to character conversion 1. The bitmap data written to the SA-1 registers by
the SA-1 CPU is converted as written and generated as character data in the buff
er area in SA-1 I-RAM. Character conversion is performed using the two SA-1
buffers alternately. When the conversion of data contained in buffer 1 is complet
ed, conversion begins on the data contained in buffer 2. When this conversion is
completed, new data contained in buffer 1 is converted. The Super NES CPU
reads the data from the buffer in the SA-1 I-RAM at the end of each conversion
using its general purpose DMA.

1-6-10

CHARACTER CONVERSION

6.7 CHARACTER CONVERSION 2 PROGRAMMING PROCEDURE

The following procedure is provided to aid the user in executing character conver
sion 2.

STEP 1. Set DCNT (2230H) using the SA-1 CPU.

DMAEN = 1 (DMA enable)

CDEN = 1 (character conversion DMA)

CDSEL = 0 (SA-1 CPU to SA-1 I-RAM write)

No other bits need to be set.

STEP 2. Store the color mode in CDMA (2231 H) using the SA-1 CPU.

The color mode is set using bits CBO and CB1 (4, 16, or 256
color modes). Bits SIZEO-2 need not be set.

STEP 3. Specify the SA-1 I-RAM transmission destination address using the
SA-1 CPU.

Store the I-RAM buffer address in DDA (2235H and 2236H).

The lowest 5 bits of the I-RAM address must be set to all zeros
for 4 color mode. The lowest 6 bits must be zero for 16 color
mode. The lowest 7 bits must be zero for 256 color mode.

STEP 4. Write the bitmap data in the conversion register using the SA-1 CPU.

The data must be written 4 times in succession (64 pixels = 1
character of data) to BRF (2240H-224FH).

The 4 write operations should be performed in the following or
der.

BRFO~1~2~ ... F~O~1~ ... ~F

Character conversion DMA will begin automatically, following
each 8 pixel write operation and generate the characters in 1-
RAM.

STEP 5. Notify the Super NES CPU that character conversion is complete.

Notify the Super NES CPU using an interrupt or SA-1 I-RAM
when a character has been completed.

The Super NES CPU transmits the character data to VRAM or
WRAM using general purpose DMA or a program.

STEP 6. Repeat STEP 4 and 5 to continue character conversion.

To continue to convert characters, write 64 pixels in succes
sion. The character data is created using DMA transmission in
the other SA-1 I-RAM buffer.

1-6-11

SNES DEVELOPMENT MANUAL

STEP 7. Indicate when character conversion is over.

Reset bit DMAEN of the DeNT register (2230H) to "0". This
ends one cycle of character conversion 2.

During these operations, other SA-1 DMA functions cannot be performed. The
Super NES general purpose DMA may be used for other functions.

1-6-12

ARITHMETIC FUNCTION

Chapter 7 Arithmetic Function

7.1 TYPES OF ARITHMETIC OPERATIONS

The SA-1 has an arithmetic circuit for high speed processing of arithmetic opera
tions. This is in addition to the arithmentc circuit installed in the Super NES PPU.
The SA-1 arithmentc circuit runs faster and can run concurrently with the Super
NES CPU. The SA-1 arithmetic circuit performs the following three types of arith
metic functions.

1. MULTIPLICATION

Multiplicand Multiplier Result

16 bits (S) X 16 bits (S) = 32 bits (S)

2. DIVISION

Dividend Divisor Result

16 bits (S) 16 bits (U) = 16 bits (S)
16 bits (U) Remainder

3. CUMULATIVE SUM

Multiplicand Multiplier Result

I(16 bits (S) X 16 bits (S)) = 40 bits (S)

Note: (S) indicates signed data and (U) indicates unsigned data.

The type of arithmetic operation is specified in the arithmetic operation control
register (**2250H) using the SA-1 CPU. The user should choose between ACM
(d1) for cumulative sum operations and MID (dO) for multiplication or division op
erations. The required number of cycles for each operation are shown below.

Arithmetic
ACM MID Number of Cycles

Operation

Multiplication 0 0 5

Division 0 1 5

Accumulative 1 - 6

Table 1-7-1 Arithmetic Operations Settings and Cycles

The number of cycles is calculated based upon 10.74 MHz per cycle.

1-7-1

SNES DEVELOPMENT MANUAL

7.2 MULTIPLICATION

Multiplication operations are carried out as follows.

1 . Set MCNT (2250H)

ACM=O, M/D=O

2. Set the arithmetic parameters.

Store the multiplicand in MA (2251 Hand 2252H).

Store the multiplier in MB (2253H and 2254H).

3. Read the result after 5 cycles.

The arithmetic result is stored in WO-W3 of MR (2306H-2309H).

WO is the lowest byte and W3 the highest.

The multiplicand is saved in memory following the operation, while the multiplier is
not.

7.3 DIVISION

Division operations are carried out as follows.

1. Set MCNT (2250H)

ACM=O, M/D=1

2. Set the arithmetic parameters.

Store the dividend in MA (2251 Hand 2252H).

Store the divisor in MB (2253H and 2254H).

3. Read the result after 5 cycles.

The arithmetic result is stored in WO and W1 of MR (2306H and 2307H).

The remainder is stored in W2 and W3 of MR (2306H and 2307H).

WO and W2 are the low bytes, while W1 and W3 are the high bytes.

Neither the dividend nor the divisor is saved in memory.

The SA-1 does not detect "divide by zero" errors. The product and remainder for
division by zero will be "0". Special attention is required to the sign of the remain
der in division when using negative numbers.

1-7-2

7.4 CUMULATIVE SUM

Cumulative sum operations are carried out as follows.

1. Set MCNT (2250H)

ACM=1

ARITHMETIC FUNCTION

When the ACM bit is set (1) the cumulative result is cleared to "0".

2. Set the arithmetic parameters.

Store the multiplicand in MA (2251 Hand 2252H).

Store the multiplier in MB (2253H and 2254H).

3. Reset the parameters after 6 cycles.

Repeat this step until the operation is completed.

4. Read the cumulative result.

The arithmetic result is stored in WO-W3 of MR (2306H-2309H).

WO is the lowest byte and W3 the highest.

The multiplicand is saved in memory following the operation, while the multiplier is
not.

The OF bit in the OF register (230BH) is set to "1" when the cumulative result ex
ceeds 40 bits.

1-7-3

SNESDEVELOPMENTMANUAL

ChapterS Variable-Length Bit Processing

8.1 READING VARIABLE-LENGTH DATA

The SA-1 variable-length bit processing function consists of a barrel shift circuit
which treats the entire game pak ROM as a stream (string) of bits which are se
quentially read in 1 -- 16 bit lengths. This allows the SA-1 to process data of vari
able lengths without having to shift the data to byte boundaries, resulting in higher
processing speed.

The SA-1 variable-length bit processing function consists only of a barrel shift
function. The function supports, but does not perform data compression or expan
sion. These processes must be performed as a part of each program.

The function is configured in this way to allow the programmer to select the best
compression algorithm for each piece of software, in order to achieve the optimal
processing speed-compression rate combination.

The SA-1 variable-length bit processing function includes two data read modes,
the Fixed Mode and the Auto-increment Mode.

The data read mode is specified in the HL bit of the VBD register (2258H).

HL=O:

HL=1:

Fixed Mode

Auto-increment Mode

1-8-1

VARIABLE-LENGTH BIT PROCESSING

8.2 FIXED MODE

In the Fixed Mode, the data stored in the variable-length data port will be read
over and over until the number of bits to be barrel shifted is reached. The shift is
carried out when the amount of the shift is written to the VBD register (2258H).
The Fixed Mode is used to read data which is formatted so that the valid bit length
is known only after the data is read. Variable-length data is processed as follows
in the Fixed Mode.

Figure 1-8-1

Store the start address of
the variable-length data.

Read data from the
variable-length data port.

Yes
END?

No

Specify amount of
barrel shift ..

Fixed Mode Process Flow Diagram

1-8-2

I RETURN I

SNESDEVELOPMENTMANUAL

8.3 AUTO-INCREMENT MODE

In the Auto-increment Mode, the amount of the barrel shift is specified in advance.
Data is shifted automatically following the data read and the next data is placed
on standby.

The Auto-increment Mode is used when the valid bit length of data is known in ad
vance or when data of the same length is to be repeated. Variable-length data is
processed as follows in the Auto-increment Mode.

Store the start address of
the variable-length data.

Specify the number of
bits to be barrel-shifted.

Read data from the
variable-length data port.

END?

No

Change
amount

No of shift

Yes

Yes

Specify amount of
barrel shift ..

Figure 1-8-2 Auto-increment Mode Process Flow Diagram

1-8-3

VARIABLE-LENGTH BIT PROCESSING

8.4 VARIABLE-LENGTH DATA PROCESSING SETTINGS

Specify the number of bits to be shifted and parameters for the SA-1 variable
length data read in the following registers.

STEP 1. Set variable-length data start address.

Store the start address of the variable-length bit stream in the
VDA register (2259H-225BH).

STEP 2. Perform variable-length data read.

Read variable-length data from the VDP register (230CH and
230DH).

An LSB-justified 16 bit block of data is read from the start of the
remaining bit stream.

STEP 3. Set the amount of the barrel shift.

Store the amount of the barrel shift in bits VBO-VB3 of the VSO
register (2258H).

VB3 VB2 VB1 VBO Significant Bit Length

0 0 0 0 16

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1 0 0 1 9

1 0 1 0 10

1 0 1 1 11

1 1 0 0 12

1 1 0 1 13

1 1 1 0 14

1 1 1 1 15

Table 1-8-1 Amount of Barrel Shift

1-8-4

SNES DEVELOPMENT MANUAL

The barrel shift is carried out from MSB to LSB and the next data is read into the
vacant MSB. This flow is demonstrated in the following illustration.

MSB

Next Data I VDP Output Data

Figure 1-8-3 Barrel Shift Process

LSB
Read data from
the VDP. ,
Set the VBD
to 4.

Read data from
the VDP.

When specifying the amount of barrel shift, the number of bits from the word
boundary is specified. For example, when 2-bit blocks of data are used;

set VB3 0 to 0010 (2) for the first shift,

set VB3 0 to 0100 (4) for the second shift, and

set VB3 0 to 0110 (6) for the third shift.

Note that the data set in the VB bits is not the number of bits to be discarded, but
rather the number of unnecessary bits counting from the word boundary.

1-8-5

DMA

Chapter 9 DMA

9.1 TYPES OF DMA

The SA-1 internal DMA function transfers data between game pak ROM, SW
RAM, and SA-1 I-RAM. SA-1 internal DMA can be operated independent of the
Super NES CPU's general purpose DMA and H-DMA. Even when both DMAs ac
cess the same memory at the same time, no problems arise because memory ac
cess is exclusive.

SA-1 internal DMA has two basic operation modes. The Normal DMA Mode is
used to transfer data between memories, while the Character Conversion DMA
Mode is used to transmit data while converting from bitmap format to character
format. This chapter describes the Normal DMA Mode. Refer to the previous
chapter, "Character Conversion", for details concerning the Character Conversion
DMA Mode.

I Game Pak ROM I
DMA ~IBW-RAM

I Game Pak ROM I DMA ~ I SA-1 I-RAM I

! SA-1 I-RAM !
DMA __ !SW-RAM

ISW-RAM DMA ~I SA-1 I-RAM I

Figure 1-9-1 Normal DMA

I SA-1 cPq Instruction CHR DMA ISA-1 I-RAMI
- ~ Conversion Character -

Conversion

ISW-RAM I DMA ~ CHR eneral SA-1 I-RAM
Character Conversion Purpose
Conversion DMA (Super NES CPU)

Figure 1-9-2 Character Conversion DMA

1-9-1

SNES DEVELOPMENT MANUAL

9.2 NORMAL DMA OPERATION

All Normal DMA is started from the SA-1 CPU. The DMA-related registers
(2230H-2239H) are used to start DMA, as described in the following procedure.

STEP 1. Set the DCNT register (**2230H).

NOTE:

Store the transmission source device in bits SDO and SD1.

Store the transmission destination device in bit DD.

The same device cannot be used for source and destination.

Source Device Destination Device

NOTE:

SD1 SDO Device DD Device

0 0 Game Pak ROM 0 SA-1 I-RAM

0 1 BW-RAM 1 BW-RAM

1 0 SA-1 I-RAM

Store the transmission mode in bit CDEN.

CDEN=O: Normal DMA
CDEN=1: Character Conversion DMA

Set DPRIO (d6) to assign priority between SA-1 CPU and
DMA.

DPrio=O:

DPrio=1 :

SA-1 CPU priority (Instructions can be exe
cuted during transmission)
DMA priority (SA-1 CPU waits during DMA)

The DPrio setting is only valid during Normal DMA between BW
RAM and SA-1 I-RAM.

Set DMAEN to enable or disable DMA.

DMAEN=O: DMA disable (DMA is not used)
DMAEN=1: DMA enable (Use DMA, clear parameters)

When setting the DMA parameters, first set DMAEN=1 from
the SA-1 CPU and then set the other parameters. Set
DMAEN=O after the DMA has been completed.

1-9-2

DMA

STEP 2. Specify the start address of the transmission source.

Store the transmission source start address in the SDA register
(2232H-2234H). The bit length varies according to the source
device.

Source Bit Number Setting Register
Device

Game Pak 24 bits **2232H, 2233H, 2234H
ROM

BW-RAM 18 bits **2232H, 2233H, 2234H

SA-1 I-RAM 11 bits **2232H, 2233H

Table 1-9-1 Source Device Settings

When transmitting from game pak ROM, start from the even
address. When transmitting from BW-RAM, transmit from bank
40H-43H. No transmissions can be sent from a bitmap access
area.

STEP 3. Set the number of bytes for transmission.

Store the number of bytes for transmission in the DTC register
(2238H and 2239H). The value set in DTC is transferred to the
internal counter in the DMA circuit (terminal counter). The DTC
range is from 1-65535 bytes.

STEP 4. Specify the transmission destination start address.

Store the transmission destination start address in the DDA
register (2235H-2237H). The bit length varies according to the
destination device.

Destination Bit Number Register Start
Device Setting Trigger

BW-RAM 18 bits **2235H, 2236H, 2237H **2237H

SA-1 I-RAM 11 bits **2235H, 2236H **2236H

Table 1-9-2 Destination Device Settings

When transferring data to BW-RAM, send the data to banks
40H-43H. Data cannot be sent to the bitmap access area. The
DMA circuit begins the transmission after the trigger address
has been written.

1-9-3

SNES DEVELOPMENT MANUAL

Normal DMA transmission ends when the internal terminal counter reaches O. Af
ter normal DMA ends, an IRQ is generated from the DMA circuit to the SA-1 CPU
to set the DMAIRQ flag in the CFR register (2301 H) to "1".

9.3 DMA TRANSMISSION SPEED

The transmission speeds for Normal DMA are as follows.:

Type of DMA Frequency

Game Pak ROM to SA-1 I-RAM 10.74 MHz

Game Pak ROM to BW-RAM 5.37 MHz

BW-RAM to SA-1 I-RAM 5.37 MHz

SA-1 I-RAM to BW-RAM 5.37 MHz

Table 1-9-3 DMA Transmission Speed

When the Super NES CPU's general purpose DMA or H-DMA generates an ac-
cess during the SA-1 's internal DMA transmission, the SA-1 internal DMA is put in
the "wait" state. Hence, the Super NES CPU's DMA has priority.

1-9-4

INTRODUCTION TO SUPER FX

Chapter 1 Introduction to Super FXTM

The Super FX is a Graphic Support processing Unit (GSU) designed to greatly improve
the Super NES graphics and mathematical functions through the use of the following
special features.

1.1 FEATURES

1.1.1 RISC-LIKE INSTRUCTIONS

Instructions which are utilized often consist of only one byte and are exe
cuted in one cycle in an instruction cache.

1.1.2 HIGH SPEED CLOCK OPERATION

The current version of the Super FX operates at a clock speed of
10.74MHz. This is six times as fast as the Super NES CPU.

1.1.3 BUILT-IN INSTRUCTION CACHE

A 512-byte cache RAM is installed in order to perform the instructions at
high speed. (Refer to "Cache RAM".)

1.1.4 SUPER NES CPU'S MEMORY MAY BE USED

The Super FX uses game pak ROM and RAM which is currently used by
the Super NES CPU. (Refer to "Memory Mapping".)

1.1.5 INDEPENDENT ROM AND RAM BUSES

The Super FX can access game pak ROM and RAM in parallel. Program
processing speed is maximized, as buffers are provided to read from
ROM and write to RAM. (Refer to "Program Execution".)

1.1.6 PARALLEL OPERATIONS WITH SUPER NES CPU

The Super NES CPU and Super FX may execute processing in parallel.
Thus, high speed operations can be performed.

1.1.7 GRAPHICS FUNCTION

A fast plot process can be performed by specifying a coordinate corre
sponding with the Super NES PPU format. (Refer to "Bitmap Emulation",
under "Super FX Special Functions".)

1.1.8 PIPELINE PROCESSING

Pipeline processing reduces the number of processing cycles and en
ables high speed operation. (Refer to "Pipeline Processing", under "In
struction Set General Description".)

2-1-1

SNES DEVELOPMENT MANUAL

1.2 SPECIAL CONVENTIONS

Unless otherwise specified, addresses will be written with a 2 digit hexadecimal
bank number and a 4 digit hexadecimal address separated by a colon (:). The fol
lowing example demonstrates this convention.

3F:0000H

In this example "3F" represents the bank number, while "0000" represents the
hexadecimal address.

2-1-2

INTRODUCTION TO SUPER FX

1.3 SYSTEM CONFIGURATION

The GSU is installed on each game pak with ROM and RAM as demonstrated be
low. The Super NES CPU and the GSU share game pak ROM and RAM. Addi
tional ROM for the Super NES CPU and back-up RAM may also be installed.

2-1-3

SNES DEVELOPMENT MANUAL

1.4 SYSTEM OPERATION

Although the Super NES CPU and GSU share game pak ROM and RAM, the pro
cessors can not access either simultaneously. The GSU has a flag, controlled by
the Super NES CPU program, which determines whether the CPU or GSU have
access to game pak ROM and/or RAM. This is demonstrated in the following fig
ure.

~ ___ (Switch) Control

SUPER NES
CPU

r----- --~

B
BACK-UP

RAM

SUPER
NES
ROM

________ .J

\
I

------~

I
I
I

I
I
I
I
I

l ___ _ -----'

GAME
PAK
ROM

GAME
PAK
RAM

._--------

Figure 2-1-2 Game Pak ROM/RAM Bus Diagram

GSU

GSU
Instruction

Bus usage for Game Pak
ROM and RAM may be
switched independently
from one another.

When using the GSU, the program must be written and executed with these
points in mind. The following example demonstrates recommended usage of the
GSU.

1.5 EXAMPLE OF USAGE

1.5.1 RESET SUPER NES

When the Super NES is reset, the GSU is also reset. In this condition the
game pak ROM and RAM busses are connected to the Super NES CPU.
The program stored in game pak ROM is processed by the Super N ES
CPU. The GSU is idle during this period.

2-1-4

INTRODUCTION TO SUPER FX

1.5.2 WRAM

The Super NES CPU is used to move the program from game pak ROM
to the work RAM (WRAM) mounted within the Super NES Control Deck.
The Super NES CPU may then be operated by this WRAM program.

1.5.3 ACTIVATION OF GSU

The GSU flag is set by the Super NES CPU. This allows the GSU to pro
cess instructions stored in game pak ROM and store results in game pak
RAM.

1.5.4 GSU STOP COMMAND

When the GSU completes the desired processing, a stop command is ex
ecuted. The GSU stops processing and generates an interrupt to the Su
per NES CPU. This notifies the Super NES CPU that the GSU has
completed its processing.

1.5.5 GSU DISCONNECT

When the GSU stops, game pak ROM and RAM busses are again con
nected to the Super NES CPU. This permits the Super NES CPU to pro
cess the results of the GSU's computations.

1.5.6 EXAMPLE SUMMARY

This process may have been used, for example, to produce game video
data. These programming steps are then repeated, as necessary, to ac
complish the programmer's desired result.

1.5.7 CURRENT CONSUMPTION

A game pak which contains the Super FX is required to have a built-in
safety program to prevent it from operating in excess of the maximum
current rating of the AC Adapter. For example, a game pak which con
tains the Super FX can not be used with Multi Player 5 because this
would exceed the maximum current rating. A program must be included
within the game pak which will check accessory IDs and activate the Su
per FX only if an acceptable accessory is connected. If an accessory 10
other than those acceptable is detected, a warning message must be dis
played and the Super FX must halt.

Some accessories may be used, depending upon the size of ROM and
RAM included in the game pak and the Super FX operating frequency.
The user should contact Nintendo's Licensee Support Group for assis
tance, in advance, if use of an accessory other than the standard control
ler is desired.

2-1-5

SNES DEVELOPMENT MANUAL

Chapter 2 GSU FUNCTIONAL OPERATION

2.1 GSU FUNCTIONAL BLOCK DIAGRAM

The GSU is comprised of the following 6 functional blocks. These are demonstrat
ed in the figure below.

C General Registers

16BITX16

S
TO U

P GAME
E PAK
R RAM

N
INSTRUCTION BUS
CONTROLLER

E
S

TO
C UPER CACHE

NES P PIPELINE
CPU U DECODER
BUS I

N TO
T GAME
E PAK
R GAME ROM
F PAK US
A ROM
C Controller
E

Figure 2-2-1 GSU Functional Block Diagram

2-2-1

GSU FUNCTIONAL OPERATION

2.1.1 SUPER NES CPU INTERFACE

The Super NES CPU Interface performs the following functions:

1 . Controls data transfer between the Super N ES CPU, game
pak ROM/RAM, and the general registers.

2. Controls instruction data transfer between Super NES CPU
and the cache.

3. Controls activation of GSU.

4. Controls interrupt to Super NES CPU.

2.1.2 INSTRUCTION CONTROLLER

This controls fetch instructions, decode instructions, and various other
blocks based upon these instructions; loaded from game pak ROM,
game pak RAM, or the cache.

Note: Pipeline and cache circuits enable high speed execution of instruc
tions.

2.1.3 GAME PAK ROM CONTROLLER

The game pak ROM controller performs the following functions:

1. Controls data transfer between the Super NES CPU and
game pak ROM.

2. Loads instructions from game pak ROM to the GSU.

3. Transfers data from the game pak ROM to the GSU internal
registers.

Note: Data transfer from the game pak ROM to the GSU is accom
plished using a ROM buffering system. This enables instructions
from the game pak RAM and cache to be executed and operated
in an array.

2.1.4 GAME PAK RAM CONTROLLER

The game pak RAM controller functions as follows:

1. Controls data transfer between the Super NES CPU and
game pak RAM.

2. Loads instructions from game pak RAM to the GSU.

3. Transfers data between game pak RAM and GSU internal
registers.

4. Bitmap emulation.

Note: Data transfer from the game pak RAM to the GSU is accomplished
using a RAM buffering system. This enables instructions from the
game pak ROM and cache to be executed and operated in an ar
ray.

2-2-2

SNES DEVELOPMENT MANUAL

2.1.5 GENERAL REGISTERS

These registers are used for general operations and data transfer.

Note: The GSU is equipped with sixteen, 16-bit registers. All GSU opera
tions are performed using the general registers.

2.1.6 OPERATOR

The Operator executes 16-bit arithmetic operations and logical opera
tions.

2.2 REGISTERS

A list of GSU internal registers is provided in the table below.

FUNCTIONAL GROUP REGISTER NAME

General Registers
General Register RD R13
ROM Address Pointer R14

Group Program Counter R15
Status/Flag Register SFR

Program Bank Register PBR
Game Pak ROM

Registers Related to Bank Register ROMBR
Memory Operations Game Pak RAM

Bank Register RAMBR
Cache Base Register CBR

Screen Base Register SCBR

Plot Related Registers Screen Mode Register SCMR
Color Register COlR
Plot Option Register POR

Back-up RAM Register BRAMR

Other Registers Version Code Register VCR
CONFIG Register CFGR
Clock Select Register ClSR

Table 2-2-1 Registers Listed by Functional Group

2.2.1 GENERAL REGISTERS

2.2.1.1 RD R13

These registers are used to execute various instructions as GSU
General Registers during GSU operation. There are special
functions available for some instructions (refer to "GSU Internal
Register Configuration"). These can also be accessed by the Su
per NES CPU when the GSU is in the idle state.

2-2-3

GSUFUNCnONALOPERAnON

2.2.1.2 R14

This register functions as a data pointer for game pak ROM dur
ing GSU operation. Data addressed in this register is automati
cally stored in the ROM buffer. As with RD - R 13, this register
may be used as a GSU general register. It can also be accessed
by the Super NES CPU when the GSU is in the idle state.

2.2.1.3 R15

This register is the GSU Program Counter. If an address is writ
ten to this register from the Super NES CPU, while the GSU is
idle, the GSU will be activated.

2.2.1.4 STATUS/FLAG REGISTER (SFR)

The "flags" in this register indicate GSU status and operation re
sults. This register can be referenced by the Super NES CPU
even while the GSU is operating.

2.2.2 REGISTERS RELATED TO MEMORY OPERATIONS

2.2.2.1 PROGRAM BANK REGISTER (PBR)

This register specifies the memory bank when an instruction is
read. Its value must be assigned from the Super NES CPU be
fore the GSU is activated. This is changed during GSU operation
using the LJMP instruction.

2.2.2.2 GAME PAK ROM BANK REGISTER (ROMBR)

This register specifies the game pak ROM bank when data are
read from the game pak ROM using the ROM buffering system.
Its value is changed during GSU operation using the ROMB in
struction.

2.2.2.3 GAME PAK RAM BANK REGISTER (RAMBR)

This register specifies the game pak RAM bank when data are
read/written from/to the game pak RAM. Its value is changed
during GSU operation using the RAMB instruction.

2.2.2.4 CACHE BASE REGISTER (CBR)

This register specifies the starting address when loading data
from the game pak ROM or RAM to the cache RAM. The value
for CBR is updated during GSU operation whenever the CACHE
instruction or LJMP instruction is executed.

2.2.3 PLOT RELATED REGISTERS

2.2.3.1 SCREEN BASE REGISTER (SCBR)

This register is used to specify the start address in the character
data storage area. Its value must be assigned from the Super
NES CPU prior to activating the GSU.

2-2-4

SNES DEVELOPMENT MANUAL

2.2.3.2 SCREEN MODE REGISTER (SCMR)

This register assigns the color and screen mode when PLOT
processing is performed. Its value must be assigned from the
Super NES CPU prior to activating the GSU.

2.2.3.3 COLOR REGISTER (COLR)

This register specifies the color when PLOT processing is per
formed. Its value is changed during GSU operation using the
COLOR instruction or GETC instruction. It cannot be accessed
from the Super N ES CPU.

2.2.3.4 PLOT OPTION REGISTER (POR)

This register assigns the mode when executing the COLOR,
GETC, or PLOT instructions. When these instructions are used,
the value of the plot option register must be assigned before exe
cution, using the CMODE instruction.

2.2.4 OTHER REGISTERS

2.2.4.1 B-RAM REGISTER (BRAMR)

Back-up RAM enable/disable can be controlled by this register.
The register's value must be assigned from the Super NES CPU.

2.2.4.2 VERSION CODE REGISTER (VCR)

This assigns the GSU version code. Its value can be read only
from the Super NES CPU.

2.2.4.3 CONFIG REGISTER (CFGR)

This register assigns the execution speed for GSU multiplication
instructions and enables/disables the interrupt signal to the Su
per NES CPU. Its value must be assigned from the Super NES
CPU prior to GSU activation.

2.2.4.4 CLOCK SELECT REGISTER (CLSR)

This register is used to assign the operating frequency for the
Super FX. Its value must be assigned from the Super NES CPU
prior to activation of the Super FX.

2-2-5

GSUFUNCnONALOPERAnON

2.3 INSTRUCTION SET

There are 98 instructions available in the GSU. These instructions and their func
tions are given in the following table.

CLASSIFICATION INSTRUCTION FUNCTION

GETB Get byte from ROM buffer
From game pak GETBH Get high byte from ROM buffer ROM (ROM

GETBL Get low byte from ROM buffer buffer) to register
GETBS Get signed byte from ROM buffer

D I
GETC Get byte from ROM to color register

AN LDW (Rm) Load word data from RAM
T S From game pak LDB (Rm) Load byte data from RAM
AT RAM to register

LM Rn, (xx) Load word data from RAM using 16 bits
TR LMS Rn, (yy) Load word data from RAM, short address
RU
AC STW (Rm) S tore word data to RAM
NT From register to STB (Rm) Store byte data to RAM
S I game pak RAM SM (xx), Rn Store word data to RAM using 16 bits
FO (RAM buffer) SMS (yy), Rn Store word data to RAM, short address EN
R S SBK Store word data, last RAM address used

From register MOVE Rn,Rn' Move word data
to register MOVES Rn,Rn' Move word data and set flags
Immediate data IWT Rn, #xx Load immediate word data
to register mT Rn, #pp Load immediate byte data

ADD Rn
ADD #n Add

ADC Rn
ADC #n Add with carry

SUB Rn
SUB #n Subtract

SBC Rn Subtract with carry
CMP Rn Compare

Arithmetic MULT Rn
Operation MULT #n Signed multiply
Instructions

UMULT Rn
UMULT #n Unsigned multiply

FMULT Fractional signed multiply
LMULT 16x 16 signed multiply
DIV2 Divide by 2
INC Rn Increment
DEC Rn Decrement

Table 2-2-2 Instruction Set (Sheet 1)

2-2-6

SNES DEVELOPMENT MANUAL

CLASSIFICATION INSTRUCTION FUNCTION

AND Rn
AND #n

Logical AND

OR Rn
Logical OR #n Logical OR
Operation NOT Invert all bits Instructions

XOR Rn
XOR #n Logical exclusive OR

BIC Rn
BIC #n

Bit clear mask

ASR Arithmetic shift right
Shift LSR Logical shift right
Instructions

ROL Rotate left through carry
ROR Rotate right through carry
Hill Value of high byte of register

Byte LOB Value of low byte of register
Transfer MERGE Merge high byte of R8 and R7
Instructions

SEX Sign extend register
SWAP Swap low and high byte
JMP Rn Jump
LJMP Rn Long jump
BRA e Branch always
BGE e Branch on greater than or equal to zero
BLT e Branch on less than zero
BNE e Branch on not equal
BEQ e Branch on equal

Jump, Branch, BPL e Branch on plus Loop Instructions
BMI e Branch on minus
BCC e Branch on carry clear
BCS e Branch on carry set
BVC e Branch on overflow clear
BVS e Branch on overflow set
LOOP Loop
LINK #n Link return address

Bank Set-up ROMB Set ROM data bank
Instructions RAMB Set RAM data bank

CMODE Set plot mode
Plot -related COLOR Set plot color
Instructions PLOT Plot pixel

RPIX Read pixel color

Table 2-2-2 Instruction Set (Sheet 2)

2-2-7

GSU FUNCTIONAL OPERATION

CLASSIFICATION INSTRUCTION FUNCTION

Prefix Flag
ALT1 Set AL T1 mode

Instructions ALT2 Set AL T2 mode
ALT3 Set AL T3 mode

Prefix Register
FROM Rn Set Sreg

Instructions TO Rn Set Dreg
WITH Rn Set Sreg and Dreg
CACHE Set cache base register

GSU Control NOP No operation Instructions
STOP Stop processor
MOVEW Rn, (Rn') Load word data from RAM

MOVES Rn, (Rn') Load byte data from RAM

MOVE Rn, (xx) Load word data from RAM using 16 bits

MOVEW (Rn'), Rn Store word data to RAM

MOVES (Rn'), Rn Store byte data to RAM

MOVE (xx), Rn Store word data to RAM using 16 bits
Macro MOVE Rn, #xx Load immediate word data Instructions

LEA Rn, xx Load effective add ress

Table 2-2-2 Instruction Set (Sheet 3)

2-2-8

SNESDEVELOPMENTMANUAL

Chapter 3 Memory Mapping

3.1 SUPER NES CPU MEMORY MAP

The figure on the following page depicts the memory map for the Super NES
CPU. Refer to this figure while reading the sub-paragraphs below.

3.1.1 GSU INTERFACE

This area (A) is mapped to address 3000H - 32FFH in banks OOH - 3FH
and 80H - BFH. (Refer to "GSU Internal Register Configuration".)

3.1.2 GAME PAK ROM

Game pak ROM (B) is mapped to 2 Mbytes starting from OO:8000H. Two
Mbytes from 40:0000H (B') are used for the ROM image. This image is
stored in blocks of 32 Kbytes, as indicated on the memory map by circled
numbers (Le., area; GY is the image of area CD, @' is the image of area @,
and so forth).

3.1.3 GAME PAK RAM

Game pak RAM (C) is mapped t0128 Kbytes starting from 70:0000H.
Eight Kbytes from address 6000H (C') in each of banks 00-3F and
80-BF are used for RAM image.

3.1.4 BACK-UP RAM

Back-up RAM (D) is mapped to 128 Kbytes from 78:0000H.

3.1.5 SUPER NES CPU ROM

Six Mbyte of ROM (E) is mapped from 80:8000H.

2-3-1

tv
W
N

SUPER NES CPU MEMORY MAP

"'T1
cO'
c
m \Bank
I\) Address\ FF CO BF
cp FFFFH
~

en
c

"0
(l)
~

z
m en
o
-u
c
~
(l)

3
o -< 8000H

~CPUROM
~ (E)

GAME PAK ~ r~oooo~~~~~~·XXJ

Q)
"0 6000H RAM IMAGE (C')

80 7F 7E

~

OOOOH 1)O()OO()O()O(X::rl;inMf*?;'l$.WIT.mmm:ri:1$~'t)W:1%i%<m:mfrrlLLJ

79 78 71 70 SF 403F 020100
FFFFH

'J' .. X' .. l"""""")" "'" 3. "" "I 8000H
GAME PAK

RAM IMAGE

'-.1 (C') I 6000H

I -=::e~:E~ !::::
1"""' """'J..". .. <;1 OOOOH

I I
~

~ 1 0
lJ
-<
~
~
~
(j)

SNES DEVELOPMENT MANUAL

3.2 GSU MEMORY MAPPING

The GSU memory map is depicted on the following page.

3.2.1 GAME PAK ROM

The game pak ROM (A) is mapped to 2 Mbytes starting from OO:8000H.
Two Mbytes from 40:0000H (A') are used for the ROM image. This image
is stored in blocks of 32 Kbytes, as indicated on the memory map by cir
cled numbers (i.e., area; G), is the image of area CD, @, is the image of
area @, and so forth). Other areas should not be used for this purpose.

3.2.2 GAME PAK RAM

Game pak RAM (B) is mapped to128 Kbytes starting from 70:0000H.
When the GSU accesses memory, it specifies bank addresses using
three bank registers. These are; Program Bank Register (PBR), ROM
Bank Register (ROMBR), and RAM Bank Register (RAMBR).

2-3-3

t;J
VJ

.L.

SUPER FX MEMORY MAP

TI
cO"
c
Cil ~ank
J\) Address FF 71 70 5F 40 3F 02 01 00
cf FFFFH I 111111111 ~~~~FFFH
J\)

(J)
C

"'C
CD .,
TI
X
s:
CD
3
o
~
s:
III

"'C
aOOOH

6000H

4000H
3300H
3000H

2000H

OOOOH ,--' -------------------------'-

Note: The PBR can be used to specify any bank address that is mapped.
The ROMBR can only be used to specify banks OOH to 5FH.

A
M
E

P
A
K

R
A
M

(8)

fV1
ROM (A)

•••• @'~'~

~""@®~<D
PAK
ROM

IMAGE
(A')

.....

~"'")""""" '" > '" .,aOOOH

.... @'eD'

6000H

4000H
3300H
3000H

2000H

I I" , ,)I , " " 10000H

~

~
~
-<
~
\J
~

~

SNES DEVELOPMENT MANUAL

Chapter 4 GSU Internal Register Configuration

The GSU internal registers will be described in detail in this chapter. Although many of
these registers may be accessed from the Super NES CPU, none can be accessed in
this way during operation of the GSU, with the exception of the Status/Flag Register
(SFR) and Version Code Register (VCR). In addition, when addressing the 16-bit regis
ters from the Super NES CPU, the low byte must be accessed first.

All addresses denoted with (**) can be accessed in banks OOH - 3FH and
SOH - BFH.

4.1 GENERAL REGISTERS (RO - R13)

Access from Super NES CPU:
Register Size:

RIW
16 bits

GSU Access Method: Various transfer instructions (LOW (Rn))
Various Operation Instructions (ADD Rn)
Other Instructions

Register Super NES
Special Functions Initial Value Name CPU Address

RO ** :3000H, 3001 H Default source/destination register Invalid

R1 ** :3002H, 3003H PLOT instruction, X coordinate OOOOH

R2 ** :3004H, 3005H PLOT instruction, Y coordinate OOOOH

R3 ** :3006H, 3007H Invalid

R4 ** :3008H, 3009H LMUL T instruction, lower 16 bits Invalid

R5 ** :300AH, 300BH Invalid

R6 ** :300CH, 300DH FMUL T and LMUL T instructions, Invalid
multiplication

R7 ** :300EH, 300FH MERGE instruction, source 1 Invalid

R8 ** :301 OH, 3011 H MERGE instruction, source 2 Invalid

R9 ** :3012H, 3013H Invalid

R10 ** :3014H, 3015H Invalid

R11 ** :3016H, 3017H LINK instruction destination register Invalid

R12 ** :3018H, 3019H LOOP instruction counter Invalid

R13 ** :301 AH, 301 BH LOOP instruction branch Invalid

Table 2-4-1 GSU General Registers

2-4-1

GSU INTERNAL REGISTER CONFIGURA TION

For LINK and LOOP special functions refer to "Instruction Execution", for other
special functions refer to the instruction name in the chapter titled "Oescription of
Instructions" .

RO

015 014 013 012 011 010

07 06 05 04 03 02

Figure 2-4-1 Example of General Register

4.2 GAME PAK ROM ADDRESS POINTER (R14)

Access from Super NES CPU:
Super NES CPU Addresses:
Register Size:

R/W
** :301 CH, 3011 OH
16 bits

09 08 3001H

01 00 3000H

GSU Access Method: Various transfer instructions (LOW (Rn))
Various operation instructions (AOO Rn)
Other instructions

07 06 05 04 03 02 01 00

A15 A14
lAME PiK ROM i

A13 A12 A11 A10 A9 A8 3010H

A7 A6 AS lA~~ pr ~~M i A2 A1 AO 301CH

R 14 is a pointer that specifies the game pak ROM address when data are loaded
from the game pak ROM to an internal register. Typically, the ROM buffering sys
tem will be used for this process.

2-4-2

SNES DEVELOPMENT MANUAL

4.3 PROGRAM COUNTER (R15)

Access from Super NES CPU:
Super NES CPU Addresses:
Register Size:
Default Address:
GSU Access Method:

D7 D6 D5 D4

PC15 PC14 PC13

PC7 PC6 PC5

RIW
** :301 EH, 3011 FH
16 bits
OOOOH
Various branching instructions (JMP Rn)
Other instruction

D3 D2 D1 DO

PC10 PCg pca 301FH

PC2 PC1 PCO 301EH

R15 is the GSU program counter. If its value is changed by a transfer instruction
or operation instruction, the program jumps to the address of the new value.

2-4-3

GSU INTERNAL REGISTER CONFIGURATION

4.4 STATUS/FLAG REGISTER (SFR)

Access from Super NES CPU: RIW
Super NES CPU Addresses: ** :3030H, 3031 FH

16 bits Register Size:
Default Address:

D7 D6

IRQ *

* R

Flag

Z

CY

S

OV

G

R

ALTI

ALT2

IL

IH

B

IRQ

Table 2-4-2

OOOOH

D5 D4 D3 D2 D1 DO

* B IH IL

3031H

I I Status
AL T2 AL T1. Portion

G ov S CY z *
3030H
Flag
Portion

* This bit is 0 when this register is read.

Description

Zero flag

Carry flag

Sign flag

Overflow flag

Go flag (set to 1 when the GSU is running)

Set to 1 when reading ROM using R14 address.

Mode set-up flag for the next instruction

Mode set -up flag for the next instruction

Immediate lower 8-bit flag

Immediate higher 8-bit flag

Set to 1 when the WITH instruction is executed.

Interrupt flag

GSU Status Register Flags

The Status/Flag register indicates the status of the GSU. It may be accessed from
the Super NES CPU during GSU operation to determine GSU status.

2-4-4

SNES DEVELOPMENT MANUAL

4.5 PROGRAM BANK REGISTER (PBR)

Access from Super NES CPU:
Super NES CPU Addresses:
Register Size:
Default Address:

RIW
** :3034H
8 bits
Undefined

GSU Access Method: LJMP instruction

D7 D6 D5 D4 D3 D2

Program Bank

A23 A22 A21 A20 I A19 A18

D1 DO

A17 A16 3034H

The program bank register specifies the memory bank register to be accessed
when the GSU is loading the program code.

4.6 GAME PAK ROM BANK REGISTER (ROMBR)

Access from Super NES CPU:
Super NES CPU Addresses:
Register Size:
Default Address:
GSU Access Method:

D7 D6 D5 D4

R
** :3036H
8 bits
Undefined
ROMB instruction

D3 D2

ROM Data Bank

A23 A22 A21 I A20 I A19 I A18

D1 DO

A17 A16 3036H

The game pak ROM bank register specifies the game pak ROM bank when load
ing data from game pak ROM using the ROM buffering system.

2-4-5

GSU INTERNAL REGISTER CONFIGURA TlON

4.7 GAME PAK RAM BANK REGISTER (RAMBR)

Access from Super NES CPU:
Super NES CPU Addresses:
Register Size:
Default Address:
GSU Access Method:

D7 D6 D5 D4

R
** :303CH
1 bit
Undefined
RAMB instruction

D3 D2

*

D1 DO

* A16 303CH

Bank = 70H when DO = 0
Bank = 71H when DO = 1 * This bit is 0 when this register is read.

The game pak RAM bank register specifies the game pak RAM bank when data
are read/written between game pak RAM and the GSU internal registers. The
RAMB instruction specifies bank 70H or 71 H for game pak RAM access.

4.8 CACHE BASE REGISTER (CBR)

Access from Super NES CPU:
Super NES CPU Addresses:
Register Size:
Default Address:

R
** :303EH, 303FH
12 bits
OOOOH

GSU Access Method: LJMP, CACHE instructions

07 06 05 04 03 02 01

Cache Base Address

A15 A14 A13 I A12 I A11 1 A10 A9

*
A7 A6

DO

A8 303FH

* 303EH

* This bit is 0 when this register is read.

The cache base register specifies the starting address when data are loaded from
game pak ROM or RAM to the cache RAM.

2-4-6

SNES DEVELOPMENT MANUAL

4.9 SCREEN BASE REGISTER (SCBR)

Access from Super NES CPU:
Super NES CPU Addresses:
Register Size:
Default Address:
GSU Access Method:

D7 D6 D5 D4

w
** :3038H
8 bits
Undefined
None

D3

Screen Base Address

D2

A17 A16 A15 J A14 I A13 I A12

D1 DO

A11 A10 3038H

The screen base register is used to specify the start address in the character data
storage area.

2-4-7

GSU INTERNAL REGISTER CONFIGURATION

4.10 SCREEN MODE REGISTER (SCMR)

Access from Super NES CPU: W
Super NES CPU Addresses: ** :303AH
Register Size: 6 bits
Default Address: OOH
GSU Access Method: None

07 06 05 04 03 02 01 DO

Screen Height Select Color Gradient
- - HT1 J RON I RAN I HTO M01 I MOO

303AH

The screen mode register specifies the color gradient and screen height during
PLOT processing and controls game pak ROM and RAM bus assignments.

4.10.1 SCREEN HEIGHT

Ht 1 HtO

0 0

0 1

1 0

1 1

Table 2-4-3 Screen Height

4.10.2 COLOR GRADIENT

Mod 1 ModO

0 0

0 1

1 0

1 1

Table 2-4-4 Color Gradient

4.10.3 ROM/RAM ENABLE FLAGS

When:

Mode

128 (pixels)

160 (pixels)

192 (pixels)

OBJ mode

Mode

4-color mode

16-color mode

Not used

256-color mode

RON = 0, the Super NES CPU has game pak ROM bus access.
1, the GSU has game pak ROM bus access.

RAN = 0, the Super NES CPU has game pak RAM bus access.
1, the GSU has game pak RAM bus access.

2-4-8

SNES DEVELOPMENT MANUAL

4.11 COLOR REGISTER (COLR)

Access from Super NES CPU:
Super NES CPU Addresses:
Register Size:
Oefault Address:
GSU Access Method:

07 06 05

C07 C06 C05

Oisabled

8 bits
Undefined
COLOR, GETC instructions

D4 03
Color pata

CD4 L CD3

02

C02

D1

C01

00

COO I

The color register contains data which specifies the colors to be plotted when
PLOT processing is performed.

4.12 PLOT OPTION REGISTER (POR)

Access from Super NES CPU:
Super NES CPU Addresses:
Register Size:
Default Address:
GSU Access Method:

07 D6 05

- - -

Disabled

5 bits
Undefined
CMODE instruction

D4 D3 D2

OBJ Freeze High

Flag
High Nibble
Flag Flag

D1 DO

Dither Trans-

Flag
parent
Flag

The plot option register contains flags which specify the mode to be used when a
COLOR, GETC, or PLOT instruction is executed.

2-4-9

4.13 BACK-UP RAM REGISTER (BRAMR)

Access from Super NES CPU:
Super NES CPU Addresses:
Register Size:
Default Address:
GSU Access Method:

D7 06 D5

When:

04

W
** :3033H
1 bit
OOH
None

D3

BRAM Flag = 0, BRAM is disabled.
1, BRAM is enabled.

GSU INTERNAL REGISTER CONFIGURA TION

02 01 00

I B~:~ I 3033H

Data becomes "protected" when the BRAM flag is reset ("a") after saving data to
the Back-up RAM.

4.14 VERSION CODE REGISTER (VCR)

Access from Super NES CPU:
Super NES CPU Addresses:
Register Size:
Default Address:
GSU Access Method:

07 06 05 04

R
** :303BH
8 bit
Undefined
None

03
Version Code

VC7 VC6 VC5 I VC4 I VC3 I
02 01 00

VC2 VC1 VCO 303BH

The version code register permits the user to read the GSU version code.

2-4-10

SNESDEVELOPMENTMANUAL

4.15 CONFIG REGISTER (CFGR)

Access from Super NES CPU:
Super NES CPU Addresses:
Register Size:
Oefault Address:
GSU Access Method:

07 06 05

IRQ - MSO

l ---
- IRQ Mask Fla - g

W
** :3037H
8 bit
OOH
None

04 03

- -

02

-

Multiplier Speed Selection
o : Standard Speed Mode
1 : High Speed Mode

01 00

- - 3037H

This is equal to 1 when the GSU interrupt request is masked.

The CON FIG register selects the operating speed of the multiplier in the GSU and -
sets up a mask for the interrupt signal.

Note: When the Super FX operates at 21 MHz (when the ClSR flag of the
Clock Select Register is "1 "), MSO flag should be fixed at "0".

4.16 CLOCK SELECT REGISTER (CLSR)

Access from Super NES CPU:
Super NES CPU Addresses:
Register Size:
Oefault Address:
GSU Access Method:

07 06 05

When:

W
**:3039H
1 bit
OOH
None

04 03

ClSR Flag = 0, Super FX operates at 10.7 MHz
= 1, Super FX operates at 21.4 MHz

02

This register assigns the Super FX operating frequency.

2-4-11

01 00

I %~: I 3039H

GSU PROGRAM EXECUTION

ChapterS GSU Program Execution

5.1 STARTING THE GSU

The GSU is placed in the idle state when the Super NES control deck is reset. The
GSU is started by writing to its internal program counter (R15) from the Super
NES. The GSU programs operate on the game pak ROM, RAM, or cache RAM,
but the GSU activation method differs depending upon which memory is access
ed. The various methods are described below.

5.1.1 STARTING GSU PROGRAM IN GAME PAK ROM

The GSU is started by the following method when the GSU program is to
operate in the game pak ROM.

5.1 .1 .1 BUS CONTROL

In order for the Super NES CPU to pass game pak ROM bus
access to the GSU, the Super NES CPU program used to start
the GSU in an area other than the game pak ROM (such as
WRAM) is transferred to the GSU and the GSU jumps to that
program.

However, if the optional ROM for the Super NES is being used,
the GSU can be started by running the start program in Super
NES ROM, making the above transfer unnecessary.

5.1.1.2 REGISTER ADDRESSING

In the Super NES CPU program for starting the GSU, first as
sign the following registers.

• PBR
• SCBR
• SCMR

(Super NES CPU Address, **:3034H)
(Super NES CPU Address, **:3038H)
(Super NES CPU Address, **:303AH)

Note: RON absolutely must be set to "1".
• CFGR (Super NES CPU Address, **:3037H)
• ClSR (Super NES CPU Address, **:3039H

Subsequently, when the lead address of the GSU program is
written from the Super NES CPU to R15 (Super NES CPU ad
dress, **:301 EH), the GSU can be started from that address.

An example of the program required for starting the GSU from
the Super NES is demonstrated on the following page.

2-5-1

SNES DEVELOPMENT MANUAL

mema
Ida
sta
sta
Ida
sta
Ida
sta
Ida
ora
sta
mem16
rep
Ida
sta

#clock data
3039H
3037H
#screen base
3038H
#program bank

;Sets operating frequency
;Sets CONFIG register

;Sets screen base

3034H ; Sets program code bank
#screen size mode
18H ; Sets RON, RAN flag, screen size, and color number

303aH

#00100000B
#program address
301 EH ; Sets program counter

5.1.2 STARTING GSU PROGRAM IN GAME PAK RAM

The following procedure is used to start the GSU when its program is to
operate in game pak RAM.

5.1.2.1 TRANSFER GSU PROGRAM

The Super NES CPU first transfers the GSU program from the
game pak ROM to game pak RAM. If the GSU will not be using
game pak ROM, the Super NES CPU does not need to pass
the game pak ROM bus access to the GSU.

5.1.2.2 REGISTER ADDRESSING

In the Super NES CPU program for starting the GSU, first as
sign the following registers.

• PBR
• SCBR
• SCMR

(Super NES CPU Address, **:3034H)
(Super NES CPU Address, **:3038H)
(Super NES CPU Address, **:303AH)

Note: RAN absolutely must be set to "1".
• CFGR (Super NES CPU Address, **:3037H)
• ClSR (Super NES CPU Address, **:3039H)

Subsequently, when the lead address of the GSU program is
written from the Super NES CPU to R15 (Super NES CPU ad
dress, **:301 EH), the GSU can be started from that address.

2-5-2

GSU PROGRAM EXECUTION

5.1.3 STARTING GSU PROGRAM IN CACHE RAM

The following procedure is used to start the GSU when its program is to
operate in cache RAM.

5.1.3.1 TRANSFER GSU PROGRAM

The Super NES CPU first transfers the GSU program from the
game pak ROM to cache RAM. If the GSU will not be using
game pak ROM or RAM, the Super NES CPU does not need to
pass the game pak ROM or RAM bus access to the GSU.

5.1.3.2 REGISTER ADDRESSING

In the Super NES CPU program for starting the GSU, first as
sign the following registers.

• PBR
• SCBR
• SCMR
• CFGR
• ClSR

(Super NES CPU Address, **:3034H)
(Super NES CPU Address, **:3038H)
(Super NES CPU Address, **:303AH)
(Super NES CPU Address, **:3037H)
(Super NES CPU Address, **:3039H)

Subsequently, when the lead address of the GSU program is
written from the Super NES CPU to R15 (Super NES CPU ad
dress, **:301 EH), the GSU can be started from that address.

5.2 STOPPING THE GSU

The following two methods may be used to stop the GSU.

• GSU auto-stop using the STOP instruction

• Forced stop from the Super NES CPU using the GO flag

5.2.1 GSU AUTO-STOP USING STOP INSTRUCTION

The STOP instruction is one of the instructions in the GSU instruction set.
When the GSU reads the STOP instruction, it resets the GO flag, sends
an interrupt (IRQ) to the Super NES CPU (to inform the CPU that pro
cessing is complete), and goes into the idle state.

The value in R 15 after the GSU has executed a STOP instruction varies
depending upon the instruction that was executed immediately prior to
the STOP instruction.

Instruction Type Value of R15

Transfer Data to R15 R15 Data + 1
Jump or Branch Jump or branch destination

address + 1
CACHE Instruction Address of STOP instruction + 1

Other Instruction Address of STOP instruction + 1

2-5-3

SNES DEVELOPMENT MANUAL

5.2.2 FORCED STOP FROM SUPER NES CPU USING GO FLAG

The GSU can be forceably stopped by writing a "0" from the Super NES
CPU to the GO flag in the status/flag register (Super NES CPU address,
** :3030H). This clears the data in the cache and resets the cache base
register to OOOOH.

5.3 MEMORY ACCESS FROM SUPER NES CPU DURING GSU
OPERATION

If a "0" is written from the Super NES CPU to the RON flag in the status/flag regis
ter (Super NES CPU address, ** :303AH) during GSU operation, the GSU will
shift to WAIT status when it requires game pak ROM access. This makes it tem
porarily possible to access game pak ROM from the Super NES CPU.

The WAIT status is subsequently canceled by writing a "1" to RON from the Super
NES CPU. This causes the GSU to resume processing. In a similar manner,
game pak RAM can be temporarily accessed by the Super NES CPU, using the
RAN flag in the screen mode register.

5.4 INTERRUPTS

5.4.1 SUPER NES CPU INTERRUPT VECTOR

Game pak ROM access from the Super NES CPU is inhibited during
GSU operation and when the RON flag is "1". If an interrupt (NMI) is gen
erated to the Super NES CPU under these conditions, an interrupt vector
from the game pak ROM will not be available for the Super NES CPU.
This will cause an error. In order to avoid this problem, when a Super
NES CPU interrupt vector is read, the GSU outputs a dummy vector on
the data bus.The table below expresses the relationship between the Su
per NES CPU interrupt vector addresses and the dummy vectors. By
placing interrupt routines in all the memories except the game pak ROM
and encoding a jump instruction to each of the interrupt routines at
WRAM addresses 00:01 04H, 00:01 OOH, 00:0108H, and 00:01 OCH, inter
rupt processing can be executed without accessing the game pak ROM.

Interrupt Vector Address Dummy Vector

00:FFE4 00:0104

00:FFE6 00:0100

00:FFE8 00:0100

OO:FFEA 00:0108

OO:FFEE 00:010C

Table 2-5-1 Dummy Interrupt Vector Addresses

2-5-4

GSU PROGRAM EXECUTION

Note: If the game pak ROM is accessed from the Super NES CPU dur
ing GSU operation when GO and RON are "1", the dummy data
can be read using the value of the lower 4 bits of that address.
This will generate the dummy addresses described above. The ta
ble below demonstrates this.

Lower 4 Bits of Address Dummy Data

OH, 2H, 6H, 8H, CH OOH

4H 04H

AH 08H

EH OCH

Other OIH

Table 2-5-2 Dummy Data

5.4.2 INTERRUPT FROM GSU TO SUPER NES CPU

The STOP instruction generates an IRQ from the GSU to the Super NES
CPU. Therefore, the Super NES CPU can continue its own processing
without having to periodically monitor the GSU for the end of its routine.
Since there are instances in which an I RQ is generated for some other
reason, the Super NES CPU must determine if the GSU was the source
of the IRQ. There is an IRQ flag at bit 15 of the GSU status register. If this
flag is "1", the IRQ was generated by the completion of GSU processing.
When bit 15 of this status register is read, the bit is reset to "0". The IRQ
output by the GSU can be disabled by setting bit 7 in the CON FIG regis
ter to "1".

2-5-5

SNES DEVELOPMENT MANUAL

Chapter 6 Instruction Execution

6.1 READING INSTRUCTION CODE

6.1.1 EXECUTION IN GAME PAK ROM/RAM

The GSU executes a program by reading the instruction codes from the
game pak ROM or RAM at the addresses specified by the PBR and pro
gram counter (R15). The contents of the PBR determines whether the in
struction code is to be read from game pak ROM or RAM (refer to
"Memory Mapping").

The RON flag must be set (1) when an instruction code is read from
game pak ROM. If the RON flag is reset (0), the GSU will be placed in the
WAIT state when a game pak ROM instruction code is loaded. Likewise,
the RAN flag must be set (1) when an instruction code is read from game
pak RAM. If the RAN flag is reset (0), the GSU will be placed in the WAIT
state when a game pak RAM instruction code is loaded.

6.1.2 EXECUTION IN CACHE RAM

If the GSUls program counter (R15) is in a cache area determined by the
cache base register and the data in the cache are valid, the GSU will read
the instruction code from the cache RAM and execute it. When a program
is being executed in the cache, even if RON or RAN is reset (0), the GSU
will not stop when an instruction code is loaded. Consequently, it be
comes possible to access the game pak ROM or RAM from the Super
NES CPU.

6.2 PIPELINE PROCESSING

The GSU employs a "pipeline" for high-speed operation. This "pipeline" is a mech
anism that, in parallel with the execution of an instruction, loads the next step and
prepares it as the next instruction. The program counter (R15) indicates the next
address following the instruction currently being executed.

Normally, it is not particularly necessary to be aware of this processing, but it must
be considered when using instructions that change the program counter (R15),
such as branch or jump instructions. When a branching process is executed, the
instruction code at the next address is loaded into the pipeline. This instruction
code is then executed in parallel with a load of the instruction code at the branch
destination address into the pipeline. This is demonstrated in example 1 on the
following page.

2-6-1

(Example 1)

FROG:

BNE FROG

INC R1

ADD R2

INSTRUCTION EXECUTION

When the program in Example 1 is executed, the INC instruction will be executed
regardless of the presence of a branch instruction, since it is loaded into the pipe
line while processing the BNE instruction.

Note: Be especially careful when placing an instruction of 2 bytes or more after
an instruction that changes the program counter.

(Example 2)

LOP1:

BNE LOP1

BRA LOP2

TO R1

When the program in Example 2 is executed, the program jumps to LOP1 when
the Z flag is 0, but the first byte of the code "BRA LOP2" has already been loaded
into the pipeline. Therefore, the code 11 H at the jump destination "TO R1" wilt be
processed as the offset value of the BRA instruction, causing "BRA ****" to be ex
ecuted instead of "TO R 1".

Note: The value for **** = LOP1 + 1 + 11 H.

In this situation, a NOP instruction should be inserted after the BNE instruction, as
shown below.

(Example 3)

LOP1:

BNE LOP1

NOP

BRA LOP2

TO R1

2-6-2

SNES DEVELOPMENT MANUAL

6.3 PROGRAM COUNTER

The GSU program counter is assigned to R15. When the value for R15 is
changed by an instruction, the program jumps to the address indicated by that val
ue.

(Example 4)

Address:

IWT RO,#0010H

IWT R4,#0020H

IWT R15,#Address

NOP

ADD

INC

R4

R3

In example 4, the program jumps to the specified address at the IWT instruction
on the third line. Due to pipeline processing, the ADD instruction in the 7th line will
be executed after the NOP instruction in the 4th line is executed. In addition, the
address following the instruction currently being executed can be identified by
moving the contents of R15 to another register.

6.4 FLAG PREFIXES

In the GSU, the action of the next instruction code to be executed varies depend
ing upon the values of the status flags (AL T1 , AL T2, B), set by instructions such
as the AL T1 instruction.

(Example 5)

The instruction code 53H will perform the processing shown below depending
upon the values for AL T1 and AL T2.

When ALT1=0, ALT2=0 Sreg+R3~Dreg (ADD R3)

When AL T1 =1, AL T2=0 Sreg+R3+CY ~Dreg (ADC R3)

When AL T1 =0, AL T2=1 Sreg+3~Dreg (ADD #3)

When AL T1 =1, AL T2=1 Sreg+3+CY ~Dreg (ADC #3)

2-6-3

INSTRUCTION EXECUTION

(Example 6)

The instruction code 11 H will perform the processing shown below depending on
the value of the 8 flag.

When 8=0

When 8=1

Set Dreg to R1

Sreg~R1

(TO R1)

(MOVE R1,Rn n=value for Sreg)

The AL T1 instruction is used to set the AL T1 flag to 1. Likewise, the ALT 2 instruc
tion is used to set the AL T2 flag to 1. The AL T3 instruction sets both the AL T1 flag
and ALT2 flag. The WITH instruction is used to set the 8 flag.

Normally, the flags which were set by these instructions are cleared after the next
instruction is executed. The flags are not cleared when the next instruction is a
FROM, TO, WITH, AL T1 , AL T2, AL T3, or a branch instruction.

For instance, since the TO and FROM instructions become MOVE and MOVES
instructions, respectively; when the 8 flag is set, these flags will be cleared after
the instructions are executed. They will also be cleared after the execution of a
NOP instruction.

Since AL T1 , AL T2, and AL T3 instructions are used in combination with the next
instruction, they do not need to be thought of as independent instructions. For in
stance, there is no need to be specifically aware that "if ADD R3 is executed after
setting the AL T1 flag with an ALT1 instruction, the instruction becomes ADC R3".
The process can simply be seen as the two-byte instruction "ADC R3". In the as
sembler, as well, it is normally unnecessary to specifically code an AL T1 instruc
tion or to write a MOVE instruction as a WITH instruction and a TO instruction.

However, as demonstrated in the following examples, these things need to be
kept in mind when accelerating program processing by effectively using the pipe
line.

(Example 7)

IWT R3,#10DH

LOP1: ADC RO ; AL T1 +ADD RD

PLOT

DEC R3

8NE LOP1

NOP

2-6-4

SNES DEVELOPMENT MANUAL

Due to pipeline processing, the code following a branching instruction will be exe
cuted regardless of the presence of a branch. In Example 7, the NOP instruction
after the BNE instruction will always be executed, but this program can be substi
tuted as demonstrated below.

(Example 8)

IWT R3,#100H

ALT1

NEWLOP1: ADD RO

PLOT

DEC R3

BNE NEWLOP1

ALT1

In this example, the branch destination "ADC RO" is divided into "AL T1" and "ADD
RO". AL T1 is placed after BNE, changing the address of the branch destination.
Thus, the pipeline code at the time of the branch becomes useful.

2-6-5

INSTRUCTION EXECUTION

A different situation is demonstrated below.

(Example 9)

IWT R3,#100H

LOP2: PLOT

MOVE R4,RS ; WITH RS+ TO R4

DEC R3

BNE LOP2

NOP

This program can be substituted as shown in Example 10.

(Example 10)

IWT R3,#100H

LOP2: PLOT

DEC R3

WITH R5

BNE LOP2

TO R4

In example 10, "MOVE R4,R5" is split into "WITH R5" and "TO R4". This kind of
rewrite is possible because the B flag is not changed by the branch instruction.

6.5 REGISTER PREFIXES

Most of the GSU instructions use a source register (Sreg) and destination register
(Dreg). The Sreg indicates the general register used for the source of the instruc
tion, while the Dreg indicates the general register used to store the result. The
Sreg and Dreg can be assigned in the GSU using the TO, FROM and WITH regis
ter prefix instructions. The Sreg is assigned using the FROM instruction and the
Dreg using the TO instruction. The Sreg and Dreg can both be assigned using the
WITH instruction. The Sreg and Dreg return to the default RO when any instruction
other than TO, FROM, WITH, ALT, or a branch is executed.

2-6-6

SNESDEVELOPMENTMANUAL

If a TO instruction or FROM instruction follows a WITH instruction, as demonstrat
ed below, they will be executed as MOVE or MOVES instructions, causing Sreg
and Dreg to return to the defaults after the instructions are executed. These regis
ters also return to the defaults after a NOP instruction is executed.

(Example 11)

The program used to execute R3=R4-R5 is as follows.

TO R3

FROM R4

SUB R5

The operation RO=R4-R5 can be performed by executing the following program,
omitting the TO instruction.

FROM R4

SUB R5

The operation RO=RO-R5 can be performed using the following program. The
FROM instruction is omitted.

SUB R5

After a normal instruction has been executed, with the exception of TO, FROM,
WITH, AL T, or a branch, Sreg and Dreg are both assigned the default register
(RO). Consequently, in the following program, the initial SUB instruction will exe
cute R3=R4-R5, but the second SUB instruction will execute RO=RO-R5.

TO R3

FROM R4

SUB R5

SUB R5

The WITH instruction not only assigns Sreg and Dreg, but also sets the B flag
within the status/flag register. The TO and FROM instructions act as different in
structions when the B flag is set.

• When a TO instruction is next, it performs a MOVE instruction (instruction to
move between registers).

• When a FROM instruction is next, it performs a MOVES instruction (instruction
to move between registers and set flags according to the data loaded).

2-6-7

INSTRUCTION EXECUTION

6.6 LOOP

The LOOP instruction is provided for efficient loop processing in the GSU. The
LOOP instruction decrements the value in R12 by 1 and, when the result is not 0,
loads the address in R13 into the program counter. When the result is 0, the next
instruction is executed without branching.

Consequently, when performing loop processing using the LOOP instruction, it is
necessary to store the loop count number in R12 and the loop return destination
address in R13.

(Example 12)

IWT R14,#DATA ;R14=ROM Address for Read Data

IWT R12,#0100H ;R12=Loop Count Number

MOVE R13,R15 ;R13=REPEAT (Loop Back Address)

REPEAT:

GETB

INC R14

LOOP ;R12=R12-1. IF (R12<>0) THEN PC=R13

PLOT

6.7 SUBROUTINES

The GSU does not have any instructions for making subroutine calls. Therefore,
when using a subroutine, it will be necessary to specify the return destination ad
dress in the program.

(Example 13)

AOOO

A003

A006

A007

A103

A104

A105

A107

FB 07 AO

FF 03 A1

01

DO

96

96

2B 1F

01

RETURN:

SUB1:

IWT R11,#RETURN

IWT

NOP

INC

ASR

ASR

R15,#SUB1

;Dummy

RO

MOVE R15,R11

NOP

2-6-8

;Jump to SUB 1

; Retu rn Add ress

;Return to Main Routine

;Dummy

SNES DEVELOPMENT MANUAL

6.8

In Example 13, the program jumps to the subroutine after the return address in
R11 has been specified. In the subroutine, the program finally returns to the main
program by loading the value for R11 to the program counter (R15).

The LINK instruction is used in the GSU for specifying the return address. LINK
adds a value from 1 to 4, depending upon the operand, to the address of the in
struction following LINK. The result is stored in R11.

(Example 14)

The call side of the routine in Example 13 can be rewritten as follows using the
LINK instruction.

AOOO 94 LINK #4 ;R11=A005

A001 FF 03 A1 IWT R15,#SUB1 ;Jump to SUB 1

A004 01 NOP

A005 DO RETURN: INC RO ;Return Address

CACHE RAM

A 512-byte instruction cache is built into the Super FX. Because instruction code
is read six times as fast as reading from game pak ROM or RAM, a program in
cache RAM runs at high speed. If a program is run in cache memory, access to
the game pak ROM or RAM can be performed at the same time the instruction is
executed. Therefore, a program can be executed at a higher speed.

6.8.1 USING CACHE INSTRUCTIONS

The CACHE instruction is used to control the cache. If the CACHE in
struction is executed, any subsequent instruction codes will be sequen
tially loaded into the cache RAM whether they are loaded from game pak
ROM or game pak RAM.

For instance, if the CACHE instruction is executed immediately prior to
loop processing, the program can be made to operate in the cache RAM
beginning with the second repetition.

Program loops exceeding 512 bytes in size will not perform efficiently
since the portion not handled in cache RAM will always be executed in
game pak ROM or game pak RAM. Dividing the program into several
loops so that the loops fit within the 512 byte limit will enable higher
speed operation when the CACHE instruction is executed immediately
prior to these loops.

2-6-9

INSTRUCTION EXECUTION

6.8.2 CACHE OPERATION

When the CACHE instruction is executed, the beginning address for data
to be loaded from game pak ROM or RAM to cache RAM is stored in the
CSR (cache base register). The cache area will be 512 bytes beginning
with the address stored in the CSR. The 512-byte cache area is further
divided into 32 blocks of 16 bytes each. A "cache flag" is assigned to
each of these 32 blocks.

When the program counter indicates the cache area, the cache flag that
corresponds with that address is read. If the cache flag is not set, the in
structions are loaded to cache RAM while the program executes in game
pak ROM or RAM. The cache flag is set when the 16-byte block has been
entirely loaded with instruction code. If the cache flag has already been
set, the program is executed in cache RAM. The cache flags are all reset
when the CACHE instruction is executed.

Since the low 4 bits of the CSR are fixed at 0, the beginning address
stored in the CSR after execution of a CACHE instruction will be the val
ue of the address following the CACHE instruction with its low 4 bits set
to ° (XXXOH). If the low 4 bits of the address following the CACHE in
struction are other than 0, the program jumps to the address in the CSR
and loads the code from the game pak ROM or RAM into the cache RAM,
after the CACHE instruction is executed.

If a branch occurs before all 16 bytes of instruction code in a block can be
loaded (before the cache flag is set), the program will branch after the re
maining instruction code in that block has been entirely loaded. This op
eration is the same within the same block. If the program has branched to
an address other than the block header address (XXXOH), the code be
tween the block header address and the branch address will be loaded
before the instruction at the branch address is executed. Refer to the il
lustration on the following page.

2-6-10

SNESDEVELOPMENTMANUAL

Figure 2-6-1

Game Pak ROM or RAM

XXXOHr-----------~

Branch Statement 1-----------,

YYYOH

YYYFH

After loading ~ into the
cache, the program will
branch.

~
After loading tzI into the
cache, the program will
execute the branch
destination instruction ..

Branch Destination , ___ -------'

t------------4

Load to Cache RAM While Branching

Since the CBR does not have any bank information, when an LJMP in
struction is executed, all cache flags are cleared and the CBR is reset to
a value with the low 4 bits of the jump destination address at 0 (XXXOH).
This operation is the equivalent of executing another CACHE instruction.

In addition, when the Super NES CPU writes a 0 to the GO flag of the
GSU's status/flag register (a forced end if the GSU is operating), all of the
cache flags are cleared and the CBR value is set to OOOOH. If the GSU is
stopped by a STOP instruction, the contents of the CBR, cache flags and
cache RAM are all saved. Consequently, when the GSU is restarted, a 0
must be written to the GO flag to reset the CBR and cache flags.

2-6-11

INSTRUCTION EXECUTION

6.8.3 CACHE RAM ACCESS FROM THE SUPER NES

It is possible for the Super NES CPU to read and write to the GSU·s
cache RAM. The cache RAM is divided into 512-byte addresses from
3100H in any of banks 00H-3FH or 80H-BFH in the Super NES memory
map. When the GSU is not operating, data can be freely read and written
from/to the Super NES CPU.

However, the CBR does not necessarily comply with address 31 OOH in
the Super NES memory map. Caution should be observed when reading
cache memory contents after the CACHE instruction has been executed.
The address in the CBR cache RAM complies with the address indicated
by the value of the low 9 bits of the CSR. Therefore, the CSR address on
the Super N ES is calculated as follows.

CBR address on Super NES = 3100H + (CBR AND 01 FFH)

When cache data is loaded from the CBR complied address to 32FFH,
continuous data is loaded from 3100H to the CBR complied address mi
nus 1.

For example; when the CBR is C3AOH,

Instruction Memory Address

C3AOH-C3FFH
C400H-C59FH

Super NES Complied Address

32AOH-32FFH
3100H-329FH

When writing data from Super NES CPU to cache RAM, instructions
must be written in 16-byte blocks. If data are written only part way
through the 16 bytes, the flag will not be set for that block. In this case,
the GSU will process as though cache data did not exist in that block. To
set the cache flag, write any data to the XXXFH address of that block.

6.8.4 GSU EXCLUSIVE OPERATION IN CACHE RAM

Sy activating the GSU after code has been written from the Super NES
CPU to the cache RAM, it is possible to operate the program exclusively
in cache RAM. The CSR value is stored from the Super NES CPU by re
setting the GO flag. This causes the CBR value to become OOOOH. The
program addresses in cache are normally OOOOH through 01 FFH, so the
GSU is activated with addresses in this range stored in the program
counter.

Please be aware that, even when a STOP instruction is executed, the
next code has been loaded into the pipeline. If the address of the STOP
instruction is XXXFH, the GSU will try to read code from external RAM
unless the cache flag for the block containing the next address (XXXOH)
has been set.

2-6-12

SNES DEVELOPMENT MANUAL

Chapter 7 Data Access

7.1 GAME PAK ROM DATA

The GSU uses a function called the "ROM buffering system" as a method of load
ing data from game pak ROM during program execution. Using the ROM buffering
system, register R14 is assigned as the address pointer to game pak ROM. When
a value is set in register R14, the game pak ROM data at the address specified by
ROMBR and register R 14 are loaded to an internal buffer called the "ROM buffer".

7.1.1 GSU PROGRAM RUNNING IN CACHE RAM OR GAME PAK RAM

When the program is running in cache RAM or game pak RAM, game
pak ROM data can be loaded in parallel with the execution of instructions.
Therefore, it is most efficient to sandwich several instructions between an
instruction that changes R 14 and a G ETB instruction.

Care is required when performing the following operations while data are
being loaded into the ROM buffer.

• If the value for R14 is updated, the initial loading process is interrupt
ed and a new loading process is started.

• If a ROMS instruction is fetched, the program will wait until the data
are loaded into the ROM buffer. The ROMSR value will be changed
after data is loaded and program execution will resume.

• If a GETB or similar instruction is fetched, the program will pause
while the data is loaded into the ROM buffer.

In the following examples, it is presumed that the program is being exe
cuted in cache RAM and bit 0 of the ClSR is "1" (Super FX operating fre
quency is 21.4 MHz).

CAUTIONS

If cache instructions are executed immediately after the value is set at
R14, while the program is running on cache RAM, the proper value is not
read to the ROM buffer. Please use caution when reading data from
ROM.

• During 21.7 MHz operation, do not insert a CACHE instruction during
the first 7 machine cycles after an instruction that changes the content
of R14.

• During 10.7 MHz operation, do not insert a CACHE instruction during
the first 4 machine cycles after an instruction that changes the content
of R14.

2-7-1

DATA ACCESS

(Example 1)

Cycle Instruction Comment

2 MOVE R14,R1 ;Start Fetching

5 GETB ;Get The Byte Into RO

1 TO R1

1 FROM R2

1 ADD R3 ;Perform R1=R2+R3

1 TO R4

1 FROM R5

1 ADD R6 ;Perform R4=R5+R6

1 ADD RS ;RO=RO+RS

Fourteen cycles are required to execute the program in the previous ex
ample. Since RO is not used until the last instruction, the GETB instruc
tion can be moved to the line before "ADD RS", as demonstrated below.

(Example 2)

Cycle Instruction

2 MOVE

1 TO

1 FROM

1 ADD

1 TO

1 FROM

1 ADD

1 GETB

1 ADD

R14,R1

R1

R2

R3

R4

R5

R6

RS

Comment

;Start Fetching

;Perform R1 =R2+R3

; Perform R4=R5+R6

;Get The Byte Into RO

;RO=RO+RS

Only 10 cycles are required to execute this program. Read timing for
game pak ROM access is as follows.

• Operating frequency 21.4 MHz: 5 cycles
• Operating frequency 10.7 MHz: 3 cycles

7.1.2 GSU PROGRAM RUNNING IN GAME PAK ROM

When the GSU program is running in game pak ROM, it is necessary to
use the ROM buffering system even when loading game pak ROM data.
The instruction following a change in register R 14 will not begin execution
until the ROM buffer is loaded.

2-7-2

I

SNES DEVELOPMENT MANUAL

7.2 GAME PAK RAM DATA

The GSU uses a function called the "RAM buffering system" as a method of load
ing data from game pak RAM during program execution. Using the RAM buffering
system, the game pak RAM address and data to be written are moved to an inter
nal buffer. The operation of writing to RAM is started by executing a STB, STW,
SM, SMS, or SBK instruction.

7.2.1 GSU PROGRAM RUNNING IN CACHE RAM OR GAME PAK ROM

When the program is running in cache RAM or game pak ROM, its write
data will be written to game pak RAM while the subsequent program is
being executed. Therefore, it is most efficient to sandwich several instruc
tions between STW instructions.

Care is required when performing the following operations while writing to
game pak RAM.

• Execution of a command that updates the register which was used as
the address in a STB or STW instruction will have absolutely no effect
on the write operation to game pak RAM and will not wait.

• If a RAMB instruction is fetched, the program will wait until the data
are written to game pak RAM. The RAMBR value will be changed af
ter the write is completed and execution of the program will resume.

• If a STW instruction is fetched, the program will wait until the data are
written to game pak RAM.

In the following examples, it is presumed that the program is being exe
cuted in cache RAM and bit 0 of the ClSR is "1" (Super FX operating fre
quency is 21.4 MHz).

(Example 3)

Cycle Instruction Comment

1 FROM R8 ;Store R8 Into (R1 0)

1 STW (R10)

10 STW (R11) ;Store RD Into (R11)

1 TO R1

1 FROM R2

1 ADD R3 ;Perform R1=R2+R3

1 FROM R5

1 ADD R6 ;Perform RO=R5+R6

2-7-3

DATA ACCESS

Seventeen cycles are required to execute the program in the previous ex
ample. Since the value for RO is not changed until the last instruction, the
second STW instruction can be moved to the line immediately before that
instruction. This is demonstrated on the following page.

(Example 4)

Cycle Instruction

1 FROM

1 STW

1 TO

1 FROM

1 ADD

7 STW

1 FROM

1 ADD

R8

(R10)

R1

R2

R3

(R11)

R5

R6

Comment

;Store R8 Into (R10)

;Perform R1=R2+R3

;Store RO Into (R11)

;Perform RO=R5+R6

Only 14 cycles are required to execute the program in Example 4. This is
more efficient that Example 3, a wait period of 2 cycles is still required to
write to game pak RAM.

7.2.2 GSU PROGRAM RUNNING IN GAME PAK RAM

When the GSU program is running in game pak RAM, it is necessary to
use the RAM buffering system described above even when writing game
pak RAM data. The instruction following a STB or similar instruction is ex
ecuted after completion of the write operation to game pak RAM.

7.3 BULK PROCESSING

Normally during bulk processing, data are loaded from game pak RAM, some pro
cessing is performed, and a process is executed to return the data to the same
address. Waste can be avoided if the process can be completed without having to
specify the address in RAM a second time.

When an instruction that performs a data transfer between the game pak RAM
and an internal register is executed in the GSU, the game pak RAM address used
in that instruction will be stored in memory. The SBK instruction stores the RAM
address in which the register contents are stored. Since it does not require an op
erand, it can be executed more quickly than the SM or SMS instructions. The dif
ference is demonstrated in the following two examples.

2-7-4

SNES DEVELOPMENT MANUAL

(Example 5)

In the following example the SBK instruction is not used. In this case, word data
have been read from game pak RAM address 1234H, the register contents are in
cremented, and again written to 1234H.

Cycle

14

1

4

Instruction

LM RO,(1234H)

INC RO

SM (1234H),RO

Comment

;ROf-(1234H)

;ROf-RO+1

;(1234H)f-RO

Nineteen cycles are required to execute the above program. If the SBK instruction
is used, the following occurs.

(Example 6)

Cycle Instruction Comment

14 LM RO,(1234H) ;ROf-(1234H)

1 INC RO ;ROf-RO+1

1 SBK ;(1234H)f-RO

In this example, only 16 cycles are required. The memory required to handle the
program is also decreased.

2-7-5

GSU SPECIAL FUNCTIONS

Chapter 8 GSU Special Functions

The GSU performs various special functions to realize high-speed operations. These
functions are described below.

8.1 BITMAP EMULATION

Since a character mapping system is used with the Super NES PPU, its CPU can
not efficiently perform processing such as; placing a point, drawing a line or paint
ing a plane (bitmap graphics). Prior to display on the screen, this data must be
converted to character data. Thereby, emulating the bitmap data.

The GSU is equipped with functions that support "Plot Processing". These func
tions, "place a point of a specified color at a specified coordinate position." Conse
quently; after setting the screen mode (CMODE instruction), the color data
(COLOR, GETC instructions), and the X,Y coordinates; the PLOT instruction is
performed.

In this manner, the GSU converts plotted (bitmapped) data to character data
which can be utilized by the Super NES PPU and writes them to game pak RAM.
In order to be displayed on screen, character data produced in the game pak RAM
must be transferred by the Super NES CPU to the V-RAM of the Super NES.

8.1.1 SET SCREEN MODE

To begin GSU plot processing, screen mode assignments must be made.
This is performed using the screen mode register (SCMR) and the screen
base register (SCBR). The plot options are assigned using the CMODE
instruction.

8.1.1.1 SCREEN MODE REGISTER (SCMR)

The GSU conversion process from bitmapped data to charac
ter data requires a screen mode selection. This determines
how the characters will be aligned and the bit mode to be used.
This is performed by assigning a mode to the SCMR using the
Super NES CPU.

The GSU has 4 modes. A BG character array may be selected
with screen heights of 128 dot, 160 dot and 192 dot. The fourth
mode is an OBJ character array.

The character data conversion processing by the GSU is per
formed assuming that the character array is aligned as demon
strated in the following figures for BG 128 dot, BG 160 dot, BG
192 dot, or OBJ; respectively. Consequently, when the con
verted data are used as BG or OBJ character data for the Su
per NES, it is necessary to assign the screen mode and store
the screen data in the VRAM.

2-8-1

SNES DEVELOPMENT MANUAL

128
DO

000 010 020 •
001 011 021 •
002 012 022 •

256 DOT

• • •
• • •
• • •

1FO

1 F1

1F2
-----------------------------------~~

:. • I • I • • :.:.:.: .. • • I • I I I

I I I I
I I I
I • I • I • I
I I

I OOFI 01FI 02FI

I I

• • I • I SC Data
I I
I I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~; i1:Fi 
Figure 2-8-1 128 Dot High BG Character Array (numbers are hexadecimal) 

160 
DO 

... 
000 014 028 

001 015 029 

002 016 02A 

• : • I • I 
I I 

I I I 
• I • I • I 

I 

I • I • I • I 
I I 

10131 0271 03s1 

256 DOT 

• • 
• • 
• • 

• • 
• • 
• • 

26C 

260 

26E 
---------------------------------~~~ 

• • 
• • SC Data 

• • 
• • 

• I 
I 
I 

• I 
I 
I 

;_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-; i2~Fi 
Figure 2-8-2 160 Dot High BG Character Array (numbers are hexadecimal) 

192 
DO 

'~ 

000 

001 

002 
I 
I • 
I 

018 

019 

01A 

• 

030 

031 

032 

• I 
I 

: • I • I .: 
I I I 

I I I 
I • I • I .: 
I I 

10171 02FI 0471 

256 DOT 
----------------------------------~~.~ 
• • 
• • 
• • 

• • 
• • 
• • 

2E8 

2E9 

2EA 
-----------------------------------~~ 

• • I • I I I 
I I 

• • 
SC Data 

• • • • I • I I 
I 

:_~ ____________________________ ~_:~' • I 

• • •• 2FF ----------------------------------
Figure 2-8-3 192 Dot High BG Character Array (numbers are hexadecimal) 

2-8-2 



~ ~ 

256 
DOT 

4 

000 001 002 

010 011 012 

020 021 022 
I I I 
I • I • • I 

I I I I I I I • I • I • I I I I 
I I 

I I I I • I • I • I I 
I 

GSU SPECIAL FUNCTIONS 

256 DOT • -----------
• • • • OOF 100 •• •• 10F ------------4---+--~--------------~~ 
• • • • 01F 110 •• •• 11F 
----------- -4---+---+-------------

• 
• 
• 
• 

• • • 02F 120 •• •• 12F 
---------- --~--~--~-------------~~ 

• 
• 
• 

I I 

• • I • I • 
I I 

• • I • I • 
I 
I .. .,. , 

•• •• 
SC Data 

•• •• 
•• •• 

• I 
I 
I 

• I 
I 
I • I 

I 

~~~~--_4------------
OFO OF1 OF2

200 201 202

210 211 212

220 221 222

•• •
•• •
•• •
•• •

~~--~--_4------------
I I
I • I • I • I
I : I I

•
•
•

• •
• •
• •

•
•
•
•
•
•
•

OFF 1FO

20F 300

21F 310

22F 320

• I • I
I

• , •
I
I • I •

• • •• 1FF
-----------~~---I

• • •• 30F

• • •• 31F
-------------~---I

• • •• 32F
--------------+----1

• • • • • I
I
I • • • • I • I

I ,
I I • • • • , • I

I • I • : .:

: I I I

I • : • I • I
I I I

" 12FOl2F1i2F21

• • • • t 2FFi3FO I

------------=§j
•• •• 3FF

Figure 2-8-4

---------- -----------
OBJ Character Array (numbers are hexadecimal)

To calculate the total number of bytes of character data re
quired, the following formula is derived from the bit mode and
the screen height and width.

Total number of bytes of character data =
(Number of dots high/8) X (Number of dots wide/8) X (8n)

,Number of]
L bytes/char

,Number of vertical] [
Number of horizontal

characters] L characters

Where n equals the number of bits per dot (2,4, or 8).

8.1.1.2 SCREEN BASE REGISTER (SCBR)

The start address of the area in game pak RAM where charac
ter data will be handled must be assigned in advance from the
Super NES CPU. This information is stored in the SCBR.

The start address is calculated using the following formula.

(Start Address) = 70:0000H+SCBRx400H

2-8-3

SNES DEVELOPMENT MANUAL

For example, when the value 11 H is stored in the SCBR, in 4-
bit mode, with a height of 128 dots, width of 192 dots;

(Start Address) = 70:0000H+ 11 Hx400H = 70:4400H

(Total number of bytes of character data)
= (128/8)x(192/8)x(8x4) = 3000H

game pak RAM addresses 70:4400H through 70:73FFH are
used for the character data area.

8.1.1.3 CMODE INSTRUCTION

The CMODE instruction must be stored in the plot option regis
ter (POR) to enable the PLOT instruction and COLOR or
GETC instructions to be selected. The relationship between
plot processing and the CMODE instruction is covered in more
detail under "Plot Function and CMODE", later in this chapter.

8.1.2 SET COLOR (COLOR, GETC)

The color data used in plot processing must be stored in the GSU's color
register (COLR) using the COLOR instruction or the GETC instruction. If
the COLOR instruction is used, the value for the source register is stored,
while the GETC instruction stores the value for the ROM buffer.

8.1.3 PLOT PROCESSING (PLOT)

The PLOT instruction plots the color data, stored by the COLOR or GETC
instruction, to the X and Y coordinates stored in general registers R1 and
R2. The X coordinate value must be in R1 and the Y coordinate value in
R2. Color data plotted by the PLOT instruction are converted to character
data and written to the game pak RAM.

Since it would be inefficient to perform a direct write to game pak RAM for
each PLOT instruction, caching is performed in an 8-bit (1 pixel) x 8-bit
memory inside the GSU. This corresponds with the 1 vertical pixel x 8
horizontal pixel blocks into which the screen is divided. This memory is
called the "pixel cache" and the blocks that are cached are called "char
acter blocks".

There are two pixel cache memories in the GSU. The color data pro
duced by the PLOT instruction is cached in the "primary pixel cache."
These data are copied to the "secondary pixel cache," then written from
the "secondary pixel cache" to game pak RAM. Each pixel cache has an
8-bit flag called the primary and secondary bit-pend flags. These indicate
whether or not the color data in each pixel cache is valid.

2-8-4

GSU SPECIAL FUNCTIONS

When the PLOT instruction is executed, the offset address of game pak
RAM where color data are written is calculated from the value in bit 7
through bit 3 of the X coordinate (R1) and the value in bit 7 through bit 0
of the Y coordinate (R2). These values are held in the GSU. When anoth
er PLOT instruction is executed, the GSU compares the new coordinate
values to those stored. If the coordinates have not changed, plotting is
performed to the same character block (stored in secondary cache) is
written to game pak RAM.

The flow of GSU plot processing will be demonstrated below using two
cases. In the first description, the character block which was stored by
the previous PLOT instruction is to be written. The second case demon
strates plotting to a different block.

8.1.3.1 PLOTTING TO SAME CHARACTER BLOCK

Color data are written to the pixel cache and the corresponding
bit-pend flag is set. When all of the bit-pend flags are set (all 8
pixels of the cache block have been written), write processing
to game pak RAM is performed in the following manner.

First, the contents of the primary pixel cache and the primary
bit-pend flag are transferred to the secondary pixel cache and
secondary bit-pend flag. If the contents of the secondary pixel
cache are in the process of being written to the game pak
RAM, this process is placed in WAIT status until the secondary
pixel cache is empty.

After transfer processing, all of the primary bit-pend flags are
cleared. Then the GSU executes the instruction following the
PLOT instruction. Since the primary pixel cache can be used,
the next instruction could be a PLOT instruction without requir
ing a WAIT status. Parallel with the execution of the next in
struction, the GSU converts the color data in the secondary
pixel cache into character data and writes them to the game
pak RAM.

8.1.3.2 PLOTTING TO A DIFFERENT CHARACTER BLOCK

The contents of the primary pixel cache and the primary bit
pend flag are transferred to the secondary pixel cache and sec
ondary bit-pend flag. If the contents of the secondary pixel
cache are in the process of being written to the game pak
RAM, this process is placed in WAIT status until the secondary
pixel cache is empty. Thereafter, color data are written to the
primary pixel cache and the corresponding bit-pend flag is set.

The GSU then executes the instruction following the PLOT in
struction. Parallel with the execution of this instruction, the
GSU converts the color data in the secondary pixel cache to
character data and writes it to game pak RAM.

2-8-5

SNES DEVELOPMENT MANUAL

The data in the corresponding character block are read from
the game pak RAM and converted back, while the color data
correspond with the flags which are not set in the secondary
bit-pend flag are set in the secondary pixel cache. The GSU
then converts the color data in the secondary pixel cache into
character data and writes them to the game pak RAM.

Thus, the operation of writing to game pak RAM using two pixel
caches can be performed in parallel with the execution of in
structions, making PLOT processing very efficient. In addition,
since the PLOT instruction increments the value for R1 after
processing, there is no need to specify coordinates when writ
ing the pixels continuously toward the right.

CAUTION

Do not change the setting of the screen mode, described under
"Set Screen Mode," during plot operations. Also, when screen
plot processing is completed, execute the RPIX instruction to
write all of the data contained in the pixel caches to the game
pak RAM.

(Example 1)

The following program is executed under the following condi
tions.

SCBR=OOH, Color Mode=256, and Screen Mode=BG 128
dot high

IBT R1,#0
IBT R2,#0 ;Set the plot starting coordinate to (0,0)
IBT RO,#O
CMODE ;Reset POR
IBT RO,#15H
COLOR ;Load 15H to the color register
PLOT
PLOT
PLOT ;Plot (0,0) through (2,0)
IBT RO,#36H
COLOR ;Load 36H to the color register
PLOT
PLOT
PLOT
PLOT
PLOT ;Plot (3,0) through (7,0)

2-8-6

GSUSPEC~LFUNcnONS

The primary pixel cache becomes the cache RAM for the char
acter block from coordinates (0,0) through (7,0). When the pro
gram is executed, the following values are stored in the primary
pixel cache and the primary bit-pend flag.

Primary Bit-pend Flag

(70:0031)
(70:0030)
(70:0021)

----t .. ~ (70:0020)
(70:0011)
(70:0010)
(70:0001)
(70:0000)

Since all 8 pixels in a character block are set with the final
PLOT instruction, they are transferred from the primary pixel
cache to the secondary pixel cache and the game pak RAM
write begins. This process clears the primary bit-pend flags and
the primary pixel cache is released.

(Example 2)

Continuing from Example 1, the following program is executed.

IBT RO,#4AH
COLOR
PLOT
PLOT
PLOT
PLOT
IBT R1,#10H
PLOT

;Load 4AH to the color register

;Plot (8,0) through (11,0)
;Change X coordinate to 16
;Plot (16,0)

2-8-7

SNES DEVELOPMENT MANUAL

The primary pixel cache becomes the cache for the character
data from coordinates (8,0) through (15,0). Immediately after
the 4th PLOT instruction is executed, the primary pixel cache
and primary bit-pend flags are as shown below.

Since the last PLOT instruction writes to a different character block, RAM
write processing is performed. First, a transfer is performed from the pri
mary pixel cache and primary bit-pend flag to the secondary pixel cache
and secondary bit-pend flag. Then, game pak RAM write processing is
performed, but the pixels in the secondary pixel cache which have not
been plotted are written after a game pak RAM read operation has been
executed.

GAME PAK
RAM ADDRESS

(70:0081)
(70:0080)
(70:00A1)
(70:00AO)
(70:0091)
(70:0090)
(70:0081)
(70:0080)

(70:0081)
(70:0080)

00 (70:00A 1)
OF (70:00AO)

FO --.. (70:0091)
00 (70:0090)

F6 (70:0081)
J--r-r-r-f--f--f--f--I-0=-=o (70: 0080)

2-8-8

GSU SPECIAL FUNCTIONS

S.1.3.3 RPIX INSTRUCTION

The RPIX instruction reads the character block containing the
specified coordinates from game pak RAM into the pixel cache
and performs processing to calculate the pixel values after the
contents of the pixel cache have been written to the game pak
RAM. When the screen drawing routine is complete, it is advis
able to execute the RPIX instruction to insure that all of the
PLOT data have been written.

If consecutive RPIX instructions are executed, game pak RAM
read data processing will always be performed because the in
struction does not discern whether or not there are color data
at the specified coordinates in the pixel cache.

CAUTION

Even when consecutive RPIX instructions read color data from
the same character block, data will always be read from the
game pak RAM.

8.1.4 PLOT FUNCTION AND CMODE

The CMODE instruction is used to determine how the color register value
will be handled by the PLOT instruction. The modes which can be speci
fied with CMODE are shown in the table below.

BIT Flag Name Operation Operation Related
when 0 when 1 Instructions

0 Transparent Do not PLOT PLOT color 0 PLOT
Flag color 0

1 Dither Flag PLOT value Alternatel~ PLOT
of low 4 PLOT hi~ 4
bits of color bits and ow
register 4 bits of

color
register

2 High Nibble Set value of Set value of COLOR,
Flag low 4 bits high 4 bits GETC in color in color

register register

3 Freeze High Set ailS Set only low COLOR,GETC,
Nibble Flag bits in 4 bits in PLOT

color color
register register with

high 4 bits
fixed

4 OBJ Mode Set mode OBJ mode PLOT,RPIX
Flag with SCMR

(htO,ht1)

Table 2-8-1 Functions of CMODE

2-8-9

SN£SD£V£LOPM£NTMANUAL

The PLOT instruction is related to bit 3, but it is also used during PLOT
processing for selecting the number of bits to be used (0=8 Bit, 1 =4 Bit)
for transparent processing.

8.1.4.1 BITO

The Super NES has multiple hardware BG screens. When one
BG screen is laid over another BG screen, the 0 portions of the
color in the top BG screen become "transparent" and the colors
of the bottom BG are displayed. The GSU uses color mode 0 to
perform this function.

When Bit 0=0 and all of the effective COLR bits are 0, the
PLOT circuit refreshes only the X coordinate and no PLOT op
eration is performed. Normal PLOT operation is performed for
anything other than O.

8.1.4.2 BIT 1

When the number of colors that can be displayed at once is low
(16 color mode), techniques can be used to apparently in
crease the number of colors through dither processing. The
GSU is able to process this with extreme ease. The example
below demonstrates the difficulties encountered when this
function is not used.

(Example 3)

Routine for drawing a horizontal line of a specified length from
a specified coordinate using two alternating specified colors.

R1 :Start X position
R2:Start Y position
R3:Color 1
R4:Color 0
R12:Line length

MOVE R13,R15
;LOOP return address

FROM R1
XOR R2
AND #1
BNE DOPLOT
FROM R3
FROM R4

DOPLOT: COLOR
PLOT
LOOP
NOP

2-8-10

;Set LOOP return address.

;Execute [RO=(R1 XOR R2)And 1].

;When not zero, set R3 (color 1) to Sreg.
;When zero, set R4 (color 0) to Sreg.
;Set value of Sreg in COLR.

GSU SPECIAL FUNCTIONS

Thus, if only the plotting functions are used, it takes time to de
termine which of the two colors to PLOT at a specified time.
The bit 1 dither flag may be used to efficiently perform this type
of drawing process. The dither mode is only functional in 4 col
or mode and 16 color mode.

When dither mode is set, the PLOT circuit checks the bit 0 val
ue of the result when an XOR operation is performed on R1 (X
coordinate) and R2 (Y coordinate). If the resultant bit 0=0, the
low 4 bits of the COLR register are used as the color data for
the PLOT instruction. However, if the resultant bit 0=1, the high
4 bits of the COLR register are used.

When the program in the previous example is written using the
CMODE instruction, only the PLOT instruction is looped, as
demonstrated below.

(Example 4)

IBT
CMODE
FROM
ADD
ADD
ADD
ADD
ADD
COLOR
MOVE

;LOOP return address
LOOP
PLOT

RO,#2

R3
R3
RO
RO

;Set to transparent and dither mode.

RO ;Shift low 4 bits of COLOR1 to high 4 bits.
R4 ;Add value of R4 (COLORO) to RO.

;Set COLR.
R13,R15

; Plot pixel.

Since the processing to determine whether or not a color is
transparent is performed in parallel with the generation of plot
data, dithering cannot be performed between a transparent col
or and a normal color. This mode can also be used in the 4 col
or mode.

8.1 .4.3 BIT 2

To efficiently perform rotation/enlargement/reduction of OBJ
data, a system is used in which each pixel of color data is
stored at one address. When displaying a 16 color OBJ, half of
the memory is wasted using this method. Memory may be con
served by storing two pixels of color data together in one byte.
However, this requires a method for extracting two pixels of
color data from one byte of data. Bit 2 of CMODE is used by
the GSU to perform this function.

2-8-11

SNES DEVELOPMENT MANUAL

When the COLOR or GETC instruction is executed with bit 2 of
CMODE set, the high 4 bits of the source register are written to
the color register. If different OBJ data are stored in the high 4
bits and low 4 bits of the same memory area, this function per
mits the packed 8-bit data to be used without shift processing.
This mode can also be used in 4 color mode.

8.1.4.4 BIT 3

If the COLOR or GETC instruction is executed in 256 color
mode with bit 3 of CMODE set, only the low 4 bits of the COLR
register can be written to the color register. The high 4 bits are
fixed. This function enables the high 4 bits of the color register
to be used in place of a palette in 256 color mode. In other
words, characters of different colors can be drawn by plotting
16 color mode data while changing the value of the high 4 bits
of the color register.

8.1 .4.5 BIT 4

When bit 4 of CMODE is set, the mode which enables charac
ter data to be produced for OBJ. When this bit is 0, the mode is
specified by HTO,HT1 of the SCMR. When switching the OBJ
mode by changing this bit, it will be necessary to use the RPIX
instruction to write the data to the game pak RAM which have
already been written to the pixel caches.

2-8-12

GSU SPECIAL FUNCTIONS

COLOR Instruction ~
PLOT instruction processing:

GE;~_ ~~~~~~~~~ ___ J --. R~gl~~~R
Generates plot data
r-----------.,

Wnte inhibited , :
by Bit 3 "",:

'b-I~ Z[7:4] ,---,...-- t-
C_O_L_R.,;;...[7_:4....;....} .. ~"'----------t~ COLOR[7:4]

t------'----II~ 0 COLOR[3:0] Z[3:4] -----t"-~ 0

SELECT SELECT

I

-----I~~~-I-------

Z is the source register

4/16 Color
Mode

for the COLOR instruction,
ROM buffer value for GETC
instruction.

Z[7:4] is a symbol that
shows the data in bit 7
through bit 4 of Z.

~----------.

PLOT Instruction Processing
Transparent Mode Processing

I--~ In transparent mode (BitO=O)
L..-------I

SCMR
Color Mode

When COLR[1 :0] are all 0
in 4 color mode

When COLR[3:0] are all 0
When COLR[7:0] are all 0

t--______ ~ When Bit 3=0 in 256 color mode
~----J When COLR[3:0] are all 0

When Bit 3= 1 in 256 color mode COLR[7:0]
~

PLOT processing not performed

Figure 2-8-5 Plot Operations Assigned by CMODE

2-8-13

PLOT
Enable/Disable

SNES DEVELOPMENT MANUAL

8.1.5 PLOT DATA ADDRESS CALCULATION METHODS

The addresses to which plot data are written are determined using the
following data.

• X and Y coordinates are specified by the low bytes of R1 and R2.

• The screen color mode and height mode are specified by the SCMR.
• SCBR
The following examples demonstrate the method of calculating this ad
dress. In the calculations below, "X[7:3]" indicates the value of bit 7
through 3 for the value of X. The expression "X4," indicates the value of
bit 4 for X.

1. Calculate the character number (CN) containing the specified co
ordinates. CN is the value of SC data in the character arrays previ
ously described.

(a) Height, 128 Dot Mode

CN [9:0] = (X[7:3] x 10H) + Y[7:3]

X7 X6 X5 X4 X3

+ Y7 Y6 Y5 Y4 Y3

CN9 CN8 CN7 CN6 CN5 CN4 CN3 CN2 CN1 CNO

(b) Height, 164 Dot Mode

CN [9:0] = (X[7:3] x 14H) + Y[7:3]

X7 X6 X5 X4 X3
X7 X6 X5 X4 X3

+ Y7 Y6 Y5 Y4 Y3

CN9 CN8 CN7 CN6 CN5 CN4 CN3 CN2 CN1 CNO

(c) Height, 192 Dot Mode

CN [9:0] = (X[7:3] x 18H) + Y[7:3]

X7 X6 X5 X4 X3
X7 X6 X5 X4 X3

+ Y7 Y6 Y5 Y4 Y3

CN9 CN8 CN7 CN6 CN5 CN4 CN3 CN2 CN1 CNO

2-8-14

GSU SPECIAL FUNCTIONS

(d) 08J Mode

CN [9:0] = (Y[7] x 200H) + (X[7] x1 OOH) + (Y[6:3] x 10H) + Y[6:3]

X7 X6 X5 X4 X3

+Y7 Y6 Y5 Y4 Y3

CN9 CN8 CN7 CN6 CN5 CN4 CN3 CN2 CN1 CNO

2. The addresses to be written to are then calculated as follows.

A[19:0] = (CN[9:0] x CHAR_SIZE)

+ (S8[7:0] x 4000H)
+ (Y[2:0] x 2)

+ (PL[2] x 200H) + (PL[1] x 100H) + PL[O]

Where CHAR_SIZE is the number of bytes used for one character.
This is 16 bytes for 4 color mode, 32 bytes for 16 color mode, and
64 bytes for 256 color mode. The expression "PL[2:0] indicates a
plane number. The expression "S8[7:0]" indicates the value stored
at the SC8R. The following examples demonstrate this calcula-
tion.

(a) 4 Color Mode

SB7 SB6 SB5 SB4 SB3 SB2 SB1 SBO

CN9 CN8 CN7 CN6 CN5 CN4 CN3 CN2 CN1 CNO
Y2 Y1 YO

+ PLO

A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 AO

(b) 16 Color Mode

SB7 SB6 SB5 SB4 SB3 SB2 SB1 SBO

CN9 CN8 CN7 CN6 CN5 CN4 CN3 CN2 CN 1 CNO
Y2 Y1 YO

+ PL1 PLO

A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 AO

(c) 256 Color Mode

SB7 SB6 SB5 SB4 SB3 SB2 SB1 SBO
CN9 CN8 CN7 CN6 CN5 CN4 CN3 CN2 CN1 CNO

Y2 Y1 YO
+ PL2 PL 1 PLO

A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 AO

2-8-15

SNES DEVELOPMENT MANUAL

8.2 MULTIPLICATION INSTRUCTIONS

The 4 multiplication instructions shown below are available in the GSU.

• MUL T Signed 8 bits x Signed 8 bits ~ Signed 16 bits
instruction Low 8 bits of Low 8 bits of Dreg

Sreg operand

• UMULT Unsigned 8 bits x Unsigned 8 bits ~ Unsigned 16 bits
instruction Low 8 bits of Low 8 bits of Dreg

Sreg operand

• LMULT Signed 16 bits x Signed 16 bits ~ Signed 32 bits
instruction Sreg R6 High Dreg Low R4

• FMULT Signed 16 bits x Signed 16 bits ~ Signed 32 bits
instruction Sreg R6 High Dreg

There is an 8 bit x 8 bit multiplier built into the GSU. Since this multiplier is used
only once with the MUL T and UMUL T instructions, these instructions can be exe
cuted at high speed. A 16 bit x 16 bit answer is calculated, for the LMUL T and
FMUL T instructions, by performing an 8 bit x 8 bit multiplication 4 times.

The execution speed of each multiplication instruction can be changed using bit 5
of the CFGR. Normally, the standard speed mode (bit 5=0) is used. When the Su
per FX operates at 10.7 MHz (when bit 0 of the CLSR is "0"), the high speed mode
(bit 5=1) can be used.lf R4 is specified as the destination register with the LMUL T
instruction, the high 16 bits of the operation results are stored in R4.

CAUTION

If R4 is specified as the destination register with the FMUL T instruction, the oper
ation results will not be stored in R4 and the results will be lost. Do not specify R4
as the destination register for the FMUL T instruction.

8.2.1 INTERNAL PROCESSING OF FMULT AND LMULT

For LMUL T and FMUL T instructions, 16 bit x 16 bit multiplication is per
formed by repeating an 8 bit x 8 bit multiplication circuit whose signed
and unsigned numbers could both be present 4 times. The processing
flow for the FMUL T and LMULT instructions is explained below. The
FMULT and LMULT instructions share the circuit, but notice that there
are processes that can only be performed by the LMUL T instruction.

Initially, an 18 bit buffer used to hold the partial results during multiplica
tion, called the partial product buffer, is cleared.

The first multiplication is performed.
Low 8 bits of Sreg (unsigned) x Low 8 bits of R6 (unsigned)

~ 16 bit result (unsigned)

2-8-16

GSU SPECIAL FUNCTIONS

The high 8 bits of the result are stored in the low 8 bits of the partial prod
uct buffer. For LMUL T, the low 8 bits of the result are stored in the low 8
bits of R4.

The second multiplication is performed.
High 8 bits of Sreg (signed) x Low 8 bits of R6 (unsigned)

~ 16 bit result (signed)

The result is expanded to 18 bits with the sign and added to the partial
product buffer.

The third multiplication is performed.
Low 8 bits of Sreg (unsigned) x High 8 bits of R6 (signed)

~ 16 bit result (signed)

The result is expanded to 18 bits with the sign and added to the partial
product buffer. For LMUL T, the low 8 bits of the partial product buffer are
further stored in the high 8 bits of R4.

The fourth multiplication is performed.
High 8 bits of Sreg (signed) x High 8 bits of R6 (signed)

~ 16 bit result (signed)

The result (16 bits) is added to the high 10 bits of the partial product buff
er. For LMUL T if the Dreg is R4, the value in the partial product buffer is
stored in R4. If the Dreg is not R4, the value of the partial product buffer is
stored in the Dreg.

If R4 is specified as the destination register for the LMUL T instruction
when performing the above processing, the high 16 bits of the operation
result will be stored in R4. However, if R4 is specified as the destination
register for the FMUL T instruction, the operation result will not be stored
as the value for R4.

2-8-17

SNES DEVELOPMENT MANUAL

Chapter 9 Description of Instructions

This chapter provides a detailed description of each instruction and its function. ROM
and RAM execution times listed for each instruction refer to the game pak ROM and
RAM. Special indicators and symbols are used throughout this chapter. These are de
fined in the following 3 tables.

9.1 OPERAND DESCRIPTIONS

INDICATOR DESCRIPTION

Ro Indicates internal register Ro.

Rn A 16-bit general use register.

R' n A 16-bit general use register.

(Rm) Indicates the value stored in the memory location specified by
the contents of register Rm.

(xx) Indicates the value stored in the memory location specified by
the 16-bit value xx.

(yy) Indicates the value stored in the memory location specified by
the 9-bit value yy. (O:::;Vy:S-;510)

#n Indicates 4-bit immediate data.

#xx Indicates 16-bit immediate data. (O:s-;xx:S-;65535)

#pp Indicates 8-bit immediate data. (-128:s-;pp:S-;127)

e 1-byte data -128:s-;e:S-;127, that expresses the displacement in
the relative addressing mode.

9.2 FLAG DESCRIPTIONS

SYMBOL DESCRIPTION

1 Set

0 Reset

* Set or reset according to results.

- No change

2-9-1

DESCRIPTION OF INSTRUCTIONS

9.3 OPERATOR FUNCTIONS

INDICATOR DESCRIPTION

Ro Indicates internal register Ro.

Rn, Rn' A 16-bit general use register specified by n.

(Rm)
Indicates a value stored in a memory location specified by the
contents of register Rm.

(xx) Indicates a value stored in a memory location specified by the
16-bit value xx.

(yy) Indicates a value stored in a memory location specified by the
9-bit value yy.

#n Indicates 4-bit immediate data.
#xx Indicates 16-bit immediate data. (O~xx~65535)

#pp Indicates 8-bit immediate data. (-128~pp~127)

e 1-bit data (-128~e~127), that expresses displacement in the
relative addressing mode.

Sreg Source register

DrAn Destination register

Hiah-Bvte UDDer byte of 16-bit data

Low-Bvte Lower byte of 16-bit data
~ Indicates direction of movement of data

+ Add

- Subtract
* Multiply

Rn, #n 1 's compliment

ALT1 ALT1 Flag

ALT2 ALT2 Flag

CY Carry Flag
ON Overflow Flag

Z Zero Flag

S Sign Flag
B B Flag

GO Go Flag

2-9-2

SNES DEVELOPMENT MANUAL

9.4 ADC Rn

Operation:

Description:

Flags affected:

Opcode:

ADC Rn

Machine Cycles:

Sreg + Rn + CY Flag ~ Dreg (n=O-15)

This instruction adds the source register, the operand, and the
carry flag. The result is stored in the destination register.

Source and destination registers are specified in advance using
a WITH, FROM, or TO instruction. When not specified, these
registers default to Ro.

The operand can be any of registers Ro-R1S.

CY Z

* *

B: Reset
ALT1: Reset
ALT2: Reset
ON: Set on signed overflow.
S: Set if result is negative, else reset
CY: Set on unsigned carry, else reset
Z: Set if result is zero.

(MSB)

ROM execution time

(LSB)

1 I 0 I 1 I (30H)
n (OH-FH) (5nH)

6 cycles

RAM execution time 6 cycles

Cache RAM execution time 2 cycles

Example: ADC R1 ; Ro+R1+CY~Ro

WITH R2 ; Set the source/destination registers to R2

ADC R3 ; R2+R3+CY ~R2

ADC R2 ; Ro+R2+CY ~Ro

2-9-3

9.5 Ace #n

Operation:

Description:

DESCRIPTION OF INSTRUCTIONS

Sreg + #n + CY Flag ~ Dreg (n=0-15)

This instruction adds the source register, the immediate data
specified by the operand #n, and the carry flag. The result is
stored in the destination register.

Source and destination registers are specified in advance using
a WITH, FROM, or TO instruction. When not specified, these
registers default to Ro.

The operand can be immediate data from 0-15.

Flags affected:

CY Z

* *

B: Reset
ALT1: Reset
ALT2: Reset
ON: Set on signed overflow.
S: Set if result is negative, else reset
CY: Set on unsigned carry, else reset
Z: Set if result is zero, else reset.

Opcode:

(LSB)

ADC#n 1 I 1 I 1 I (3FH)
n (OH-FH) (5nH)

Machine Cycles: ROM execution time 6 cycles

Example:

RAM execution time 6 cycles

Cache RAM execution time 2 cycles

ADC #9H

FROM R3

ADC #5H

ADC #OAH

; Ro+0009H+CY ~Ro

; Set the source register to R3

; R3+0005H+CY ~Ro

; Ro+OOOAH+CY ~Ro

2-9-4

SNES DEVELOPMENT MANUAL

9.6 ADD Rn

Operation:

Description:

(n=O-15)

This instruction adds the source register and the register speci
fied by the operand Rn. The result is stored in the destination
register.

Source and destination registers are specified in advance using
a WITH, FROM, or TO instruction. When not specified, these
registers default to Ro.

The operand can be any of registers Ro-R1S.

Flags affected:

CY Z

* *

B: Reset
ALT1: Reset
ALT2: Reset
ON: Set on signed overflow.
S: Set if result is negative, else reset
CY: Set on unsigned carry, else reset
Z: Set if result is zero.

Opcode:
(MSB) (LSB)

ADD Rn I 0 I 1 I 0 I 1 n (OH-FH) I (5nH)

Machine Cycles: ROM execution time 3 cycles

Example:

RAM execution time 3 cycles

Cache RAM execution time 1 cycle

Under the following conditions:

Sreg: RO,Dreg: Ro, Ro=4283H, R4=2438H

Ro=66BBH when ADD R4 is executed.

ADD R4 ; Ro+R4~Ro

TO Rs ; Set the destination register to Rs

ADD R6 ; Ro+R6~Rs

2-9-5

9.7 ADD #n

Operation:

Description:

DESCRIPTION OF INSTRUCTIONS

Sreg + #n~ Dreg (n=0-15)

This instruction adds the source register to the immediate data
specified by the operand #n. The result is stored in the destina
tion register.

Source and destination registers are specified in advance using
a WITH, FROM, or TO instruction. When not specified, these
registers default to Ro.

The operand can be immediate data from 0-15.

Flags affected:

Opcode:

B:
ALT1:
ALT2:
ON:
S:
CY:
Z:

Reset
Reset
Reset

CY

*

Z

*

Set on signed overflow, else reset.
Set if result is negative, else reset
Set on unsigned carry, else reset.
Set on zero result, else reset.

(MSB) (LSB)

ADD#n

I ~ I ~ I ~ I ~ 11 ~ (~L;J) 0 I ~~~~;
Machine Cycles: ROM execution time

RAM execution time

6 cycles

6 cycles

2 cycles Cache RAM execution time

Example: Under the following conditions:

Sreg: R4, Dreg; R7, R4=3682H

R7 is 368AH when ADD #8H is executed.

ADD #8H ; R4+0008H~R7
WITH R7 ;Set the source and destination registers to R7
ADD #2H ; R7+0002H~R7
ADD R7 ; Ro+R7~Ro

2-9-6

SNES DEVELOPMENT MANUAL

9.8 ALT1

FLAG PREFIX INSTRUCTION

Operation:

Description:

Flags affected:

Opcode:

ALT1

Machine Cycles:

Example:

1 ~ ALT1 Flag

AL T1 is a prefix instruction used in combination with the instruc
tion which follows. When AL T1 is executed, the Super FX sets
the AL T1 flag in bit 8 of the status flag register (3030, 3031 H).

The AL T1 flag specifies the mode for the next instruction.

CY z

ALT1: Set

(MSB) (LSB)

1 I 0 I 1 I (3DH)

ROM execution time 3 cycles

RAM execution time 3 cycles

Cache RAM execution time 1 cycles

Execution of the AL T1 instruction sets the AL T1 flag. Various in
structions can be executed, depending upon the instruction
which follows the AL T1 prefix.

(Refer to, "AL T1 ($30) +", in the Super FX Opcode Matrix at the
end of this chapter.)

2-9-7

DESCRIPTION OF INSTRUCTIONS

9.9 ALT2

FLAG PREFIX INSTRUCTION

Operation:

Description:

Flags affected:

1 ~ ALT2 Flag

AL T2 is a prefix instruction used in combination with the instruc
tion which follows. When AL T2 is executed, the Super FX sets
the AL T2 flag in bit 9 of the status flag register (3030, 3031 H).

The AL T2 flag specifies the mode for the next instruction.

B IA~T1IA~T21 o~ I S CY Z

Opcode:

ALT2

Machine Cycles:

Example:

ALT2: Set

(MSB) (LSB)

1 0 1 01 1 1 1 1 1 1 0 1 (3EH)

ROM execution time 3 cycles

RAM execution time 3 cycles

Cache RAM execution time 1 cycles

Execution of the AL T2 instruction sets the AL T2 flag. Various in
structions can be executed, depending upon the instruction
which follows the AL T2 prefix.

(Refer to, "AL T2 ($3E) +", in the Super FX Opcode Matrix at the
end of this chapter.)

2-9-8

SNES DEVELOPMENT MANUAL

9.10 ALT3

FLAG PREFIX INSTRUCTION

Operation:

Description:

Flags affected:

1 ~ ALT1 Flag
1 ~ ALT2 Flag

AL T3 is a prefix instruction used in combination with the instruc
tion which follows. When AL T3 is executed, the Super FX sets
the AL T1 and AL T2 flags in bits 8 and 9 of the status flag register
(3030,3031 H).

These flags specify the mode for the next instruction.

B IA~T1IA~T21 o~ I S CY Z

Opcode:

ALT3

Machine Cycles:

Example:

ALT1: Set
ALT2: Set

(MSB) (LSB)

10 I 0 I 1 1 1 1 1 I 1 I (3FH)

ROM execution time 3 cycles

RAM execution time 3 cycles

Cache RAM execution time 1 cycles

Execution of the AL T3 instruction sets the AL T 1 and AL T 2
flags. Various instructions can be executed, depending upon the
instruction which follows the AL T3 prefix.

(Refer to, "AL T3 ($3F) +", in the Super FX Opcode Matrix at the
end of this chapter.)

2-9-9

9.11 AND Rn

Operation:

Description:

Flags affected:

Opcode:

ADD Rn

Machine Cycles:

Example:

DESCRIPTION OF INSTRUCTIONS

(n=1-15)

This instruction performs logical AND on corresponding bits of
the source register and the operand Rn. The result is stored in
the destination register.

Source and destination registers are specified in advance using
a WITH, FROM, or TO instruction. When not specified, these
registers default to Ro.

The operand can be any of registers R1-R15.

CY Z

*

B: Reset
ALT1: Reset
ALT2: Reset
S: Set if result is negative, else reset
Z: Set on zero result, else reset.

(MSB) (LSB)

n (1 H-FH) I (7nH)

ROM execution time 3 cycles

RAM execution time 3 cycles

Cache RAM execution time 1 cycles

AND Rs ; Ro AND Rs ~ Ro

(163AH) (OOFFH) ~ (OO3AH)

FROM Rg ;Set the source register to Rg

TO R10 ;Set the destination register to R10

AND R7 ; Rg AND R7 ~ R10

(55AAH) (FFOOH) ~ (5500H)

2-9-10

SNES DEVELOPMENT MANUAL

9.12 AND #n

Operation:

Description:

Flags affected:

Opcode:

ADD#n

Machine Cycles:

Example:

Sreg AND #n~ Dreg (n=1-15)

This instruction performs logical AND on corresponding bits of
the source register and the immediate data specified by the op
erand #n. The result is stored in the destination register.

Source and destination registers are specified in advance using
a WITH, FROM, or TO instruction. When not specified, these
registers default to Ro.

The operand can be immediate data from 1-15.

CY Z

*

B: Reset
ALT1: Reset
ALT2: Reset
S: Set if result is negative, else reset
Z: Set on zero result, else reset.

(MSB) (LSB)

I ~ I ~ 11 11 11 I 1 I 1 I 0 1 (3EH)
. . . 1 1 n (1 H-FH) (7nH)

ROM execution time 6 cycles

RAM execution time 6 cycles

Cache RAM execution time 2 cycles

When register Ro is, "3E5DH (0011 1110 0101 1101 B)",

AND #6H

will result in,

Ro = "0004H (000000000000 0100B)".

2-9-11

DESCRIPTION OF INSTRUCTIONS

9.13 ASR

Operation:

C:Yg Sreg CY

1-+ 1-+ 1+ 1-+ I~D

Description:

Flags affected:

015 ,. DO
Dreg

1 1 1 1 1 1 1 1 1 1 1 1 I
015 DO

This instruction shifts all bits in the source register one bit to the
right. Bit 0 goes into the carry flag and bit 15 is unaffected. The
result is stored in the destination register.

Source and destination registers are specified in advance using
a WITH, FROM, or TO instruction. When not specified, these
registers default to Ro.

I ~ I A~T1 I A~T21 o~ I ~ I G.V I ~

Opcode:

ASR

Machine Cycles:

B: Reset
ALT1: Reset
ALT2: Reset
S: Set if result is negative, else reset
CY: Set if bit 0 in the source register is "1",

else reset
Z: Set on zero result, else reset.

(MSB)

ROM execution time
RAM execution time
Cache RAM execution ti me

2-9-12

(LSB)

1 1 0 I (96H)

3 cycles
3 cycles
1 cycles

SNES DEVELOPMENT MANUAL

Example: Under the following conditions,
Sreg: R10' Dreg: R1

CY bit 15 bitO

[QJ R10 1 0 11 10 1 0 11 11 11 11 10 11 11 11 11 10 11 11 I (4F7BH)

When ASR is executed, the carry flag and R1 are:

CY bit15 bitO

IT] R1 I 0 1 0 11 I 0 1 0 11 11 11 11 1 0 11 11 11 11 1 0 11 1 (27BDH)

2-9-13

9.14 Bee e

Operation:

Description:

Flags affected:

Opcode:

Note:

Machine Cycles:

If CY Flag=O

DESCRIPTION OF INSTRUCTIONS

(e= -128 -+ 127)
R15 identifies the next
address for the BCC
instruction (2 bytes)

If the carry flag is "0", add "e" to the contents of the program
counter R15 and JUMP to the address indicated by the resulting
value in the program counter.

If the carry flag is "1", do not jump.

The relative offset can be -128 to + 127 bytes from the address
following the code for "e".

If the decision results in a JUMP, the next instruction to be exe
cuted will already be in the instruction pipeline of the processor.
For this reason one byte from the pipeline will be executed be
fore the instruction at the branch destination is executed. (The
execution time for this instruction is not included in the machine
cycles listed below.)

CY z

No flags affected

(MSB) (LSB)

o I 0 I (OCH)
--.... ~ Relative address

The number "e" (number, label, formula) which shows the jump
destination is given in the assembler as an operand.

ROM execution time 6 cycles

RAM execution time 6 cycles

Cache RAM execution time 2 cycles

2-9-14

SNES DEVELOPMENT MANUAL

Example: In the following example, the carry flag is zero and the program
jumps forward 5 bytes from the execution address of the instruc
tion.

BCC $+5H

The relationship between the program and the program
counter is as follows:

PC ADDRESS

51E
51F
520
521
522
523

Object Code

OC-, (BCC $+5H)
03--.J

f-PC before jum:J Execute instruction
at address 520 and

f-PC after jump jump.

2-9-15

9.15 Bes e

Operation:

Description:

Flags affected:

Opcode:

If CY Flag=1

DESCRIPTION OF INSTRUCTIONS

(e= -128-+ 127)
R15 identifies the next
address for the BCS
instruction (2 bytes)

If the carry flag is "1", add "e" to the program counter R15 and
JUMP to the address indicated by the resulting value in the pro
gram counter.

If the carry flag is "0", do not jump.

The relative offset can be -128 to + 127 bytes from the address
following the code for "e".

If the decision results in a JUMP, the next instruction to be exe
cuted will already be in the instruction pipeline of the processor.
For this reason one byte from the pipeline will be executed be
fore the instruction at the branch destination is executed. (The
execution time for this instruction is not included in the machine
cycles listed below.)

CY z

No flags affected

(MSB) (LSB)

BCSe I
~ I 0 I 0 I 0 I 1 1 0 I 1 I (ODH)
.... ~----- e (OOH-FFH) ---I... Relative

~------------------------------------~. address

Note:

Machine Cycles:

The number "e" (number, label, formula) which shows the jump
destination is given in the assembler as an operand.

ROM execution time

RAM execution time

Cache RAM execution time

2-9-16

6 cycles

6 cycles

2 cycles

SNES DEVELOPMENT MANUAL

Example: In the following example, the carry flag is set and the program
jumps backward 1 byte from the execution address of the in
struction.

BCS $-1 H

The relationship between the program and the program
counter is as follows:

PC ADDRESS

420
42E
42F
430
431

Object Code

~PC after jump :J
00, (BCS $-1 H)
FD-J Execute instruction
~PC before jump at address 430 and

jump.

2-9-17

9.16 BEQ e

Operation:

Description:

Flags affected:

If Z Flag=1

DESCRIPTION OF INSTRUCTIONS

(e= -128-+ 127)
R15 identifies the next
address for the BEQ
instruction (2 bytes)

If the zero flag is "1", add "e" to the program counter R15 and
JUMP to the address indicated by the resulting value in the pro
gram counter.

If the zero flag is "0", do not jump.

The relative offset can be -128 to + 127 bytes from the add ress
following the code for "e".

If the decision results in a JUMP, the next instruction to be exe
cuted will already be in the instruction pipeline of the processor.
For this reason one byte from the pipeline will be executed be
fore the instruction at the branch destination is executed. (The
execution time for this instruction is not included in the machine
cycles listed below.)

B IA~T1IA~T21 o~ I S CY Z

No flags affected

Opcode: (MSB) (LSB)

BEQe
1°10101011101
~ e(OOH-FFH)

° 1 1 I (09H)
~ Relative

Note:

Machine Cycles:

address

The number "e" (number, label, formula) which shows the jump
destination is given in the assembler as an operand.

ROM execution time 6 cycles

RAM execution time 6 cycles

Cache RAM execution time 2 cycles

2-9-18

SNES DEVELOPMENT MANUAL

Example: In the following example, the zero flag is set and the program
jumps ahead 5 bytes from the execution address of the instruc
tion.

SEQ $+5H

The relationship between the program and program
counter is as follows:

PC ADDRESS Object Code

15FD
15FE
15FF
1600
1601
1602
1603

g~ ~ (SEQ $+5H)

~PC before jumP:J Execute instruction
at address 1600

PC ft
. and jump.

~ a er Jump

2-9-19

9.17 BGE e

Operation:

Description:

Flags affected:

Opcode:

BGEe

Note:

Machine Cycles:

If (S XOR ON)=O

DESCRIPTION OF INSTRUCTIONS

(e= -128 + 127)
R15 identifies the next
address for the BGE
instruction (2 bytes)

If the sign flag and the overflow flag are equal, add "e" to the pro
gram counter R15 and JUMP to the address indicated by the re
sulting value in the program counter.

If the values are different, do not jump.

The relative offset can be -128 to + 127 bytes from the address
following the code for "e".

If the decision results in a JUMP, the next instruction to be exe
cuted will already be in the instruction pipeline of the processor.
For this reason one byte from the pipeline will be executed be
fore the instruction at the branch destination is executed. (The
execution time for this instruction is not included in the machine
cycles listed below.)

CY z

No flags affected

(MSB) (LSB)

I
0 I 0 I 0 I 0 I 0 I 1 I 1 1 I (07H)

t--... --'-----'-e-('--O-O-H.L...-.... -F-F-'--H-) ----'-~~~:.~---I Relative
'----------------_______________________ ~. address

The number "e" (number, label, formula) which shows the jump
destination is given in the assembler as an operand.

ROM execution time 6 cycles

RAM execution time 6 cycles

Cache RAM execution time 2 cycles

2-9-20

SNES DEVELOPMENT MANUAL

Example: In the following example, the sign flag and over flag are set and
the program jumps backward 3 bytes from the execution address
of the instruction.

BGE $-3H

The relationship between the program and program
counter is as follows:

PC ADDRESS

22FA
22FB
22FC
22FD
22FE
22FF
2300

Object Code

~PC after jump J
Execute
instruction at

07 =:J (BGE $-3H) ?ddress 2300 and
FB Jump.
~PC before jump

2-9-21

DESCRIPTION OF INSTRUCTIONS

9.18 BIC Rn

Operation: Sreg AND Rn~ Dreg (n=1-15)

Description: This instruction performs logical AND on corresponding bits of
the source register and the 11S complement of register specified
in the operand Rn. The result is stored in the destination register.

The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified,
these registers default to Ro.

The operand can be any of registers R1-R1S'

Flags affected:

Opcode:

BIC Rn

CY z
*

B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set if result is negative, else reset
Z : Set on zero result, else reset.

(MSB)

0 0 1

0 1 1

1 1 I 1 I 0 I
1 n (1 H-FH)

(LSB)

1 (3DH)

(7nH)

Machine Cycles: ROM execution time

RAM execution time

6 cycles

6 cycles

2 cycles Cache RAM execution time

Example: Under the following conditions:

Sreg: R2, Dreg: Ro

R2=75CEH (0111 0101 1100 111 OB),
R1=3846H (0011 10000100 0110B)

Ro is 4588H (0100 0101 1000 1000B) when

BIC R1
is executed.

2-9-22

SNES DEVELOPMENT MANUAL

9.19 BIC #n

Operation:

Description:

Flags affected:

Opcode:

BIC#n

Machine Cycles:

Example:

Sreg AND #n~ Dreg (n=1-15)

This instruction performs logical AND on corresponding bits of
the source register and the 11S complement of the immediate
data specified in the operand #n. The result is stored in the desti
nation register.

The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified,
these registers default to Ro.

The operand can be immediate data from 1-15.

CY z
*

B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set if result is negative, else reset
Z : Set on zero result, else reset.

(MSB)

0 0 1

0 1 1

1 1

1

(LSB)

I 1 I 1 I 1

n (1 H-FH)

(3FH)

(7nH)

ROM execution time 6 cycles

RAM execution time 6 cycles

Cache RAM execution time 2 cycles

Under the following conditions:

Sreg: R4, Dre.Q: Rs
R4= 364BH {0011 0110 0100 1011 B)

Rs is 3640H (0011 0110 0100 OOOOB) when

BIC#F

is executed.

2-9-23

9.20 Bll e

Operation:

Description:

Flags affected:

If (8 XOR ON)=1

DESCRIPTION OF INSTRUCTIONS

(e= -128-+ 127)
R15 identifies the next
address for the BL T
instruction (2 bytes)

If the sign flag and the overflow flag are different, add "e" to the
program counter R15 and read the next instruction at the location
indicated by the resulting value in the program counter.

If the values are the same, do not jump.

The relative offset can be -128 - + 127 bytes from the address
following the code for "e".

If the decision results in a JUMP, the next instruction to be exe
cuted will already be in the instruction pipeline of the processor.
For this reason one byte from the pipeline will be executed be
fore the instruction at the branch destination is executed. (The
execution time for this instruction is not included in the machine
cycles listed below.)

B IA~T1IA~T21 o~ I 8 CY Z

No flags affected

Opcode: (M8B) (L8B)

o I 0 I 0 I 0 I 1 I 1
BLTe

I 0 I
~ e (OOH-FFH)

I 0 I (OSH)
• Relative

Note:

Machine Cycles:

address

The number "e" (number, label, formula) which shows the jump
destination is given in the assembler as an operand.

ROM execution time 6 cycles

RAM execution time 6 cycles

Cache RAM execution time 2 cycles

2-9-24

SNES DEVELOPMENT MANUAL

Example: In the following example, the sign flag is set and the overflow flag
is reset. The program jumps forward 4 bytes from the execution
address of the instruction.

BLT $+4H

The relationship between the program and program
counter is as follows:

PC ADDRESS

BBD
BBE
BBF
BCQ
BC1
BC2

Object Code

g~~ (BL T $+4H)

f-PC before jump.:J Execute instruction
L-PC aft . mp at a~dress BCQ
~ er JU and Jump.

2-9-25

9.21 BMI e

Operation:

Description:

Flags affected:

Opcode:

BMle

Note:

Machine Cycles:

If S Flag = 1

DESCRIPTION OF INSTRUCTIONS

(e= -128-+ 127)
R15 identifies the next
address for the BM I
instruction (2 bytes)

If the sign flag is "1", add "e" to the program counter R15 and
read the next instruction at the location indicated by the resulting
value in the program counter.

If the sign flag is "0", do not jump.

The relative offset can be -128 - + 127 bytes from the address
following the code for "e".

If the decision results in a JUMP, the next instruction to be exe
cuted will already be in the instruction pipeline of the processor.
For this reason one byte from the pipeline will be executed be
fore the instruction at the branch destination is executed. (The
execution time for this instruction is not included in the machine
cycles listed below.)

z

No flags affected

(MSB) (LSB)

I
0 I 0 I 0 I 0 I 1 I 0 I 1 I 1 I (OBH)
... e (OOH-FFH) .. Relative

L...--____________ --'. address

The number "e" (number, label, formula) which shows the jump
destination is given in the assembler as an operand.

ROM execution time

RAM execution time

Cache RAM execution time

2-9-26

6 cycles

6 cycles

2 cycles

SNES DEVELOPMENT MANUAL

Example: In the following example, the sign flag is set and the program
jumps forward 5 bytes from the execution address of the instruc
tion.

8MI $+5H

The relationship between the program and program
counter is as follows:

PC ADDRESS

570
57E
57F
580
581
582
583

Object Code

g~ ~ (8MI $+5H)

f-PC before jumP:J Execute instruction
at address 580

. and jump.
f-PC after Jump

2-9-27

9.22 BNE e

Operation:

Description:

Flags affected:

Opcode:

BNE e

Note:

Machine Cycles:

If Z Flag = 0

DESCRIPTION OF INSTRUCTIONS

(e= -128-+ 127)
R15 identifies the next
address for the BNE
instruction (2 bytes)

If the zero flag is "0", add "e" to the program counter R15 and
read the next instruction at the location indicated by the resulting
value in the program counter.

If the zero flag is "1", do not jump.

The relative offset can be -128 - + 127 bytes from the address
following the code for "e".

If the decision results in a JUMP, the next instruction to be exe
cuted will already be in the instruction pipeline of the processor.
For this reason one byte from the pipeline will be executed be
fore the instruction at the branch destination is executed. (The
execution time for this instruction is not included in the machine
cycles listed below.)

CY Z

No flags affected

(MSB) (LSB)

I

0 I 0 I 0 I 0 I 1 I 0 I 0 I 0 I (08H)
... e (OOH-FFH) • Relative

~------__________________ ~. address

The number "e" (number, label, formula) which shows the jump
destination is given in the assembler as an operand.

ROM execution time 6 cycles

RAM execution time 6 cycles

Cache RAM execution time 2 cycles

2-9-28

SNES DEVELOPMENT MANUAL

Example: In the following example, the zero flag is reset and the program
jumps backward 2 bytes from the execution address of the in
struction.

BNE $-2H

The relationship between the program and program
counter is as follows:

PC ADDRESS

35FB
35FC
35FD
35FE
35FF
3600
3601

Object Code

f-PC after jump] Execute
instruction at

~~ ~ (BNE $-2H) ~ddress 3600 and
f-PC before jump Jump.

2-9-29

9.23 BPL e

Operation:

Description:

Flags affected:

Opcode:

BPLe

Note:

Machine Cycles:

If S Flag = 0

DESCRIPTION OF INSTRUCTIONS

(e= -128-+ 127)
R15 identifies the next
address for the BPL
instruction (2 bytes)

If the sign flag is "0", add "e" to the program counter R15 and
read the next instruction at the location indicated by the resulting
value in the program counter.

If the sign flag is "1", do not jump.

The relative offset can be -128 - +127 bytes from the address
following the code for "e".

If the decision results in a JUMP, the next instruction to be exe
cuted will already be in the instruction pipeline of the processor.
For this reason one byte from the pipeline will be executed be
fore the instruction at the branch destination is executed. (The
execution time for this instruction is not included in the machine
cycles listed below.)

CY z

No flags affected

(MSB) (LSB)

I
0 I 0 I 0 I 0 I 1 I 0 I 1 I 0 I (OAH)
~ e (OOH-FFH) .. Relative

L...--____________ -..J. address

The number "e" (number, label, formula) which shows the jump
destination is given in the assembler as an operand.

ROM execution time

RAM execution time

Cache RAM execution time

2-9-30

6 cycles

6 cycles

2 cycles

SNES DEVELOPMENT MANUAL

Example: In the following example, the sign flag is reset and the program
jumps forward 4 bytes from the execution address of the instruc
tion.

BPL $+4H

The relationship between the program and program
counter is as follows:

PC ADDRESS

95D
95E
95F
960
961
962
963

Object Code

g~ ~ (BPL $+4H)

f-PC before jump ~ Execute instruction
. at address 960

f-PC after Jump and jump.

2-9-31

9.24 BRA e

Operation:

Description:

Flags affected:

Opcode:

BRAe

Note:

Machine Cycles:

DESCRIPTION OF INSTRUCTIONS

(e= -128-+ 127)
R15 identifies the next
address for the BRA
instruction (2 bytes)

Regardless of the status of the flags, add "e" to the program
counter R15 and read the next instruction at the location indicat
ed by the resulting value in the program counter.

The relative offset can -128 - +127 bytes from the address fol
lowing the code for "e".

When a JUMP occurs, the next instruction to be executed will al
ready be in the instruction pipeline of the processor. For this rea
son one byte from the pipeline will be executed before the
instruction at the branch destination is executed. (The execution
time for this instruction is not included in the machine cycles list
ed below.)

CY z

No flags affected

(MSB) (LSB)

I

0 I 0 I 0 I 0 I 0 I 1 I 0 I 1 I (05H)
~ e (OOH-FFH) ~ Relative

L-________________________ ~. address

The number "e" (number, label, formula) which shows the jump
destination is given in the assembler as an operand.

ROM execution time 6 cycles

RAM execution time 6 cycles

Cache RAM execution time 2 cycles

2-9-32

SNES DEVELOPMENT MANUAL

Example: In the following example, the program jumps backward to the ex
ecution address of the instruction.

BRA $OH

The relationship between the program and program
counter is as follows:

PC ADDRESS

BOFC
BOFD
BOFE
BOFF
B100
B101

Object Code

05 =:J ~PC after jump ~ Execute
FE (BRA $OH) n ~ instruction at

~PC before jump address B100
and jump.

2-9-33

9.25 Bve e

Operation:

Description:

Flags affected:

Opcode:

BVCe

Note:

Machine Cycles:

If ON Flag=O

DESCRIPTION OF INSTRUCTIONS

(e= -128-+127)
R 15 identifies the next
address for the BVC
instruction (2 bytes)

If the overflow flag is "0", add "e" to the program counter R15 and
read the next instruction at the location indicated by the resulting
value in the program counter.

If the overflow flag is "1", do not jump.

The relative offset can be -128 - +127 bytes from the address
following the code for "e".

If the decision results in a JUMP, the next instruction to be exe
cuted will already be in the instruction pipeline of the processor.
For this reason one byte from the pipeline will be executed be
fore the instruction at the branch destination is executed. (The
execution time for this instruction is not included in the machine
cycles listed below.)

CY z

No flags affected

(MSB) (LSB)

I
0 I 0 I 0 I 0 I 1 I 1 I 1 I 0 I (OEH)
.... e (OOH-FFH) ~ Relative

~------------------------~. address

The number "e" (number, label, formula) which shows the jump
destination is given in the assembler as an operand.

ROM execution time

RAM execution time

6 cycles

6 cycles

Cache RAM execution time 2 cycles

2-9-34

SNES DEVELOPMENT MANUAL

Example: In the following example, the overflow flag is reset and the pro
gram jumps forward 4 bytes from the execution address of the
instruction.

BVC $+4H
The relationship between the program and program
counter is as follows:

PC ADDRESS

2880
288E
288F
2890
2891
2892
2893

Object Code

g~ =:J (BVC $+4H)

~PC before jump ~ Execute instruction
at address 2890

~PC after jump and jump.

2-9-35

9.26 BVS e

Operation:

Description:

Flags affected:

Opcode:

BVSe

Note:

Machine Cycles:

If ON Flag=1

DESCRIPTION OF INSTRUCTIONS

(e= -128-+ 127)
R15 identifies the next
address for the BVS
instruction (2 bytes)

If the overflow flag is "1 ", add "e" to the program counter R15 and
read the next instruction at the location indicated by the resulting
value in the program counter.

If the overflow flag is "0", do not jump.

The relative offset can be -128 - +127 bytes from the address
following the code for "e".

If the decision results in a JUMP, the next instruction to be exe
cuted will already be in the instruction pipeline of the processor.
For this reason one byte from the pipeline will be executed be
fore the instruction at the branch destination is executed. (The
execution time for this instruction is not included in the machine
cycles listed below.)

z

No flags affected

(MSB) (LSB)

I
~ I 0 I 0 I 0 I 1 1 1 I 1 I (OFH)
.... iOiiii------- e (OOH-FFH) ----I.,.. Relative

~------------_______________________ ~. address

The number "e" (number, label, formula) which shows the jump
destination is given in the assembler as an operand.

ROM execution time 6 cycles

RAM execution time 6 cycles

Cache RAM execution time 2 cycles

2-9-36

SNES DEVELOPMENT MANUAL

Example: In the following example, the overflow flag is set and the program
jumps backward 2 bytes from the execution address of the in
struction.

BVS $-2H

The relationship between the program and program
counter is as follows:

PC ADDRESS

68B
68C
680
68E
68F
690
691

Object Code

f-PC after jump ~ Execute instruction
OF ----, (BVS $-2H) at a~dress 690
FC ---l and Jump.
f-PC before jump _

2-9-37

9.27 CACHE

Operation:

Description:

Flags affected:

Opcode:

CACHE

DESCRIPTION OF INSTRUCTIONS

If CACHE BASE REGISTER<>(R15 & OFFFOH)

then (R15 & OFFFOH)-7CACHE BASE REGISTER

When the cache base register is equal to the address with the
lower 4 bits of the program counter at 0, nothing occurs. When it
is not equal to this address, reset all cache flags and set the
cache base register to that value.

B IA~T1IA~T21 o~ I S CY Z

0

B : Reset
ALT1 : Reset
ALT2 : Reset

(MSB) (LSB)

I o 1 0 I 0
1

0
1 0 1 0 1

1
1 0 1 (02H)

Machine Cycles: ROM execution time 3-4 cycles

RAM execution time 3-4 cycles

Cache RAM execution time 1 cycle

2-9-38

SNES DEVELOPMENT MANUAL

9.28 CMODE

Operation:

Description:

Sreg (b4-bO) ~ PLOT OPTIONS REGISTER

This instruction loads the lower 5 bits of the source register into
the plot options register. The instruction is used to specify the
PLOT, COLOR, and GETC execution modes.

Bit 0 - Transparency Flag

0= Transparency ON

If transparency is on and the color register is "0", the plot circuit
only changes the X coordinate. When transparency is on and the
color register is other than "0", the normal plotting operation is
performed.

1 = Transparency OFF

The normal plotting operation is performed when transparency is
off.

Bit 1 - Dither Flag

Bit 1 is only valid in the 16-color mode. When Bit 1 is "1" and the
values of bit 0 in registers R1 and R2 are the same, the lower 4
bits in the color register are plotted. When bit 0 of registers R1
and R2 are different, the upper 4 bits in the color register are
plotted.

Note: When transparency is on and the 4 bits to be plotted are
"0", only the X coordinate is changed.

Bit 2 - Upper 4 Bits Color

Bit 2 is valid in the 16-color and 256-color modes. In the 256-col
or mode, Bit 3 must be set to a logic "1".

When Bit 2 is "1", the upper 4 bits in the source register are
stored in the lower 4 bits of the color register while processing
the COLOR and GETC instructions. This allows the data for two
pixels to be stored in one byte.

Bit 3 - 256 Color Mode Only

Set Bit 3, "1", in the 256-color mode to fix the upper 4 bits of the
color register while processing the COLOR and GETC instruc
tions and change the lower 4 bits only.

Bit 4 - Sprite Mode

Set Bit 4, "1", to specify the bitmap in the sprite mode.

2-9-39

Flags affected:

B

0

Opcode:

CMOOE

DESCRIPTION OF INSTRUCTIONS

IA~T1IA~21 o~ I S

I
CY

I
Z

B : Reset
ALT1 : Reset
ALT2 : Reset

(MSB) (LSB)

I ~I~I:I:I~I ~I~I:I (30H)

(4EH)

Machine Cycles: ROM execution time 6 cycles

RAM execution time 6 cycles

Cache RAM execution time 2 cycles

Example: Under the following conditions,

Sreg: Ro, Ro= 0002H

the transparency and dithering modes are set when

CMOOE

is executed.

2-9-40

SNES DEVELOPMENT MANUAL

9.29 CMP Rn

Operation:

Description:

Flags affected:

Opcode:

Sreg - Rn (n=O-15)

This instruction subtracts the operand Rn from the source regis
ter and sets the flags accordingly. The result of the subtraction is
not stored.

The source register is specified in advance using a FROM or
WITH instruction. When not specified, the source register de
faults to Ro.

The operand can be Ro-R15.

CY z
* *

B : Reset
ALT1 : Reset
ALT2 : Reset
O/V : Set on overflow, else reset
S : Set when the result is negative, else reset.
CY : Set on unsigned borrow, else reset.
Z : Set on zero result, else reset

(MSB) (LSB)

0 0 1 1 1 1 (3FH)
CMP Rn

I 1 I 1 I
0 1 1 0 n (OH-FH) (6nH)

Machine Cycles:

Example:

ROM execution time 6 cycles

RAM execution time 6 cycles

Cache RAM execution time 2 cycles

Under the following conditions,

Sreg: R1, R1= 8000H, R3= 2FFFH

the overflow and carry flags are set and sign and zero flags are
reset when

is executed.

2-9-41

9.30 COLOR

Operation:

Description:

Note:

Flags affected:

DESCRIPTION OF INSTRUCTIONS

Sreg ~ Color register

This instruction loads the lower 8 bits of the source register into
the color register as the color value.

The value in the color register is stored in the color matrix (8
rows x 8 columns) with the PLOT instruction. When the PLOT in
struction has been executed eight times or either of registers R1
or R2 is changed, the data is changed automatically to character
data format and stored in the game pak RAM.

B
I A~T1 I A~T21 o~ I S CY Z

0

Opcode:

COLOR

Machine Cycles:

B : Reset
ALT1 : Reset
ALT2 : Reset

(MSB)

1 0 11 1 0 10 1 1

ROM execution time

RAM execution time

1

Cache RAM execution time

Example: Under the following conditions:

Sreg: R6, R6= 9830H

1

(LSB)

I 0 I (4EH)

3 cycles

3 cycles

1 cycles

the color register becomes 30H when

COLOR

is executed.

2-9-42

SNES DEVELOPMENT MANUAL

9.31 DEC Rn

Operation:

Description:

Flags affected:

(n=O-14)

This instruction decrements the register specified in the operand
Rn by 1 and stores the result back in the same register. The reg
ister used can be Ro-R14.

CY z
*

B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set when the result is negative, else reset.
Z : Set on zero result, else reset

Opcode: (MSB) (LSB)

DEC Rn I 1 I 1 I 1 I 0 I n (OH-EH) I (EnH)

Machine Cycles: ROM execution time 3 cycles

RAM execution time 3 cycles

Cache RAM execution time 1 cycles

Example: Under the following conditions:

Rg= A3F7H

when the following instruction is executed

DEC Rg

Rg becomes A3F6H.

2-9-43

9.32 DIV2

Operation:

Description:

Flags affected:

Opcode:

DIV2

Machine Cycles:

DESCRIPTION OF INSTRUCTIONS

If (Sreg) = -1 then 0 ~ (Dreg)

else ASR (Sreg) ~ (Dreg)

This instruction automatically shifts all bits in the source register
right one place. The result is stored in the destination register.
(Refer to ASR instruction for details.) If the source register data
is FFFFH, the result stored in the destination register is OOOOH.

The source and destination registers are specified in advance
using a FROM, WITH, or TO instruction. When not specified,
these registers default to Ro.

CY z
* *

B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set when the result is negative, else reset.
CY : Set when Bit 0 of the source register is "1"

and reset when "0".
z : Set on zero result, else reset

(MSB) (LSB)

I ~ I ~ I : I: I : I : I ~ I : I ~:~=:
ROM execution time

RAM execution time

Cache RAM execution time

2-9-44

6 cycles

6 cycles

2 cycles

SNES DEVELOPMENT MANUAL

Example: Under the following conditions,

Sreg: R7, Dreg: R2

Cy Bit15 BitO
~ R7: 1 01 1 1 01 0 1 0 1 1 1 11 01 01 01 1 11 1 0 1 1 1 01 1 1 (4635H)

becomes

Cy Bit15 BitO
QJ R2: 1 01 0 1 1 1 0 1 0 1 01 11 1 1 01 0 1 0 11 1 1 1 01 1 1 01 (231 AH)

when

DIV2

is executed.

2-9-45

9.33 FMULT

Operation:

D15

1 1

Description:

DESCRIPTION OF INSTRUCTIONS

Sreg DO D15 R6 DO

I· • • • ·1 1 1 ~ 1--11....--11.--1 ._. _. _. -----1.... 1---,1------,1

D31 D16 D15 DO

1 1 1 Upper 16 Bits 1 1 1 I II ~wer16Bits I
D15 DO CY Flag

1""---r--I ~I. -. -. -. ----r-. 1---'1-----'1
Dreg

This instruction performs a 16 x16-bit signed multiplication with
the source register and R6. The upper 16 bits of the 32-bit result
are stored in the destination register. Bit 15 of the 32-bit result
becomes the carry flag.

The source and destination registers are specified in advance
using a FROM, WITH, or TO instruction. When not specified,
these registers default to Ro.

Note: Any register, Ro ... R1S, except R4 may be assigned as the
destination register.

Flags affected:

CY z
* *

B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set when the result is negative, else reset.
CY : Set when Bit 15 of the result is "1"

z
Opcode: (MSB)

and reset when "0".
: Set if the upper 16 bits of result are zero,

else reset.
(LSB)

FMUL T I 1 I 0 0 1 1 1 1 I 1 I (9FH)

2-9-46

SNES DEVELOPMENT MANUAL

Machine Cycles:

Note:

Example:

ROM execution time
RAM execution time
Cache RAM execution time

11 or 7 cycles
11 or 7 cycles
8 or 4 cycles

The number of machine cycles depends on the CFGR register.

Under the following conditions,

Sreg: Rs, Dreg: R2, Rs= 4AAAH, R6= DAABH

R2 becomes F51 CH and the carry flag and sign flag are set
when

FMULT

is executed.

2-9-47

DESCRIPTION OF INSTRUCTIONS

9.34 FROM Rn

REGISTER PREFIX INSTRUCTION

Operation:

Description:

Flags affected:

Opcode:

If B =0 then set Sreg to Rn (n=O-15)

else Rn ~ Dreg

This instruction specifies which of the registers, Ro-R15, is to be
used as the source register. If the B flag is set, the contents of
the specified operand Rn are stored in the destination register
Dreg ,_ which is specified using the WITH instruction. (Refer to the
MOVES instruction.)

CY z

No flags affected

(MSB) (LSB)

FROM Rn
'L.....-_1 'L.....-

0----1-' 1----1-.1----1-. _n_(O_H_-F_H_) ---I. (Bn H)

Machine Cycles:

Example:

ROM execution time 3 cycles

RAM execution time 3 cycles

Cache RAM execution time 1 cycles

Execute

to set R2 as the source register.

2-9-48

;Sets the source register to R2

;Executes R2 + R3~Ro

SNES DEVELOPMENT MANUAL

9.35 GETB

Operation:

Description:

Flags affected:

Opcode:

GETB

D7 ROM Buffer DO

OOH I I • • • • • I I

D15 • 08 D7 • DO

I I • • • • • I II I • • • • • I I

This instruction loads one byte of data stored in the ROM buffer
into the lower 8 bits of the destination register and resets the up
per 8 bits of the destination register. Register R14 is the ROM ad
dress pointer when data is loaded from the game pak ROM into
the ROM buffer. Using the value stored at R14 for the game pak
ROM address, data is read from game pak ROM to the ROM
buffer.

Banks are specified in advance using the ROMB instruction.
However, changing banks using the ROMB instruction does not
in itself trigger a ROM load.

The destination register is specified in advance using a WITH or
TO instruction. When not specified, this register defaults to Ro.

z

B : Reset
ALT1 :Res~
ALT2 :Res~

(MSB) (LSB)

111111011 1 1 1 1 1 (EFH)

Machine Cycles: ROM execution time 3-8 cycles

Note:

RAM execution time 3-9 cycles

Cache RAM execution time 1-6 cycles

Because the ROM buffer is used, the number of execution cycles
varies with each program.

2-9-49

Example: Under the following conditions,

ROM buffer=0075H, Dreg:Ro

Ro becomes 0075H when

GETS

is executed.

2-9-50

DESCRIPTION OF INSTRUCTIONS

SNES DEVELOPMENT MANUAL

9.36 GETBH

Operation:

Sreg
D7 ROM Buffer DO D15 D8 D7 DO I I ••••• I I r--r-----::-U~pp-e-r =-Byt-e---r---'1 r--r---:------=------r---,

D15 t D8 D7 DO

Upper Byte Lower Byte

Description:

Note:

Flags affected:

Opcode:

GETBH

Machine Cycles:

Note:

Dreg

This instruction loads the data contained in the ROM buffer to
the high byte of the destination register and the low byte of the
source register to the low byte of the destination register.

The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified,
these registers default to Ro.

Refer to the GETB instruction and "Memory Mapping" for infor
mation to load data from game pak ROM to the ROM buffer.

CY z

B : Reset
ALT1 :Res~
ALT2 :Res~

(MSB) (LSB)

1 ~I~I :1: I: 1:1 ~I :1
(3DH)

(EFH)

ROM execution time 6-10 cycles

RAM execution time 6-9 cycles

Cache RAM execution time 2-6 cycles

Because the ROM buffer is used, the number of execution cycles
varies with each program.

2-9-51

DESCRIPTION OF INSTRUCTIONS

Example: Under the following conditions,

(ROM buffer) = 75H, Sreg: R2 , Dreg: R6 , R2= 4ABDH

R6 becomes 75BDH when

GETBH

is executed.

2-9-52

SNESDEVELOPMENTMANUAL

9.37 GETBL

Operation:

. Descri ption:

Note:

Flags affected:

Sreg
DaD7 DO D7 ROM Buffer DO

Lower Byte I I • • • • • I I

D8 D7 ~ DO

Lower Byte

Dreg

This instruction loads the data contained in the ROM buffer to
the low byte of the destination register and the high byte of the
source register to the high byte of the destination register.

The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified,
these registers default to Ro.

Refer to the G ETB instruction and "Memory Mapping" for infor
mation to load data from game pak ROM to the ROM buffer.

B : Reset
ALT1 :Res~
ALT2 :Res~

Opcode: (MSB) (LSB)

GETBL I ~ I ~ I ~ I: I ~ I ~ I ~ I ~ I ~::::
Machine Cycles:

Note:

ROM execution time 6-10 cycles

RAM execution time 6-9 cycles

Cache RAM execution time 2-6 cycles

Because the ROM buffer is used, the number of execution cycles
varies with each program.

2-9-53

Example:

DESCRIPTION OF INSTRUCTIONS

Under the following conditions,

(ROM buffer) = 75H, Sreg: R2 , Dreg: R6 , R2= 4ABDH

R6 is 4A75H when

GETBL

is executed.

2-9-54

SNES DEVELOPMENT MANUAL

9.38 GETBS

Operation:

0706 DO
ROM Buffer

Dreg

015 08 07 06 DO

Description:

Note:

Flags affected:

Opcode:

GETBS

Machine Cycles:

Note:

This instruction loads the data contained in the ROM buffer to
the low byte of the destination register and the data contained in
Bit 7 of the ROM buffer to Bits 8-15 of the destination register.

The destination register is specified in advance using a WITH or
TO instruction. When not specified, this register defaults to Ro.

Refer to the GETB instruction and "Memory Mapping" for infor
mation to load data from game pak ROM to the ROM buffer.

CY z

B : Reset
ALT1 :Res~
ALT2 :Res~

(MSB) (LSB)

ROM execution time 6-10 cycles

RAM execution time 6-9 cycles

Cache RAM execution time 2-6 cycles

Because the ROM buffer is used, the number execution cycles
varies with each program.

2-9-55

Example: Under the following conditions,

(ROM buffer) = 85H, Dreg: Rs

Rs becomes FF85H when

GETBS

is executed.

2-9-56

DESCRIPTION OF INSTRUCTIONS

SNES DEVELOPMENT MANUAL

9.39 GETC

Operation:

Description:

Note:

Flags affected:

Opcode:

GETC

Machine Cycles:

Note:

Example:

(ROM buffer) -7 (COLOR register)

This instruction loads the data contained in the ROM buffer into
the color register as color data.

Refer to the GETB instruction and "Memory Mapping" for infor
mation to load data from game pak ROM to the ROM buffer. Re
fer to COLOR and "Bitmap Emulation" for information concerning
the color register and how to plot.

B : Reset
ALT1 : Reset
ALT2 : Reset

(MSB)

I 1 I 1 0 I 1 I 1 I

ROM execution time

RAM execution time

1

Cache RAM execution time

1

z

(LSB)

I 1 I (DFH)

3-10 cycles

3-9 cycles

1-6 cycles

Because the ROM buffer is used, the number of execution cycles
varies with each program.

Under the following conditions,

(ROM buffer) = 4BH

4BH is loaded to the color register when

GETC

is executed.

2-9-57

DESCRIPTION OF INSTRUCTIONS

9.40 HIB

Operation:

D15 Sreg D8 D7 DO

I I Upper Byte I II I Lower Byte I I
OOH

D15 + D8 D7 DO

Upper Byte Lower Byte

Description:

Flags affected:

Opcode:

HIB

Machine Cycles:

Dreg

This instruction loads the high byte of the source register into the
low byte of the destination register. The high byte of the destina
tion register is loaded with OOH.

The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified,
these registers default to Ro.

B
ALT1
ALT2
S

Z

: Reset
: Reset
: Reset

z
*

: Set if a negative number is loaded to the low
byte of the destination register, else reset.

: Set if zero is loaded to low byte of
the destination register, else reset.

(LSB)

o I 0 I 0 I 0 I 0 I 0 I (COH)

ROM execution time 3 cycles

RAM execution time 3 cycles

Cache RAM execution ti me 1 cycles

2-9-58

SNES DEVELOPMENT MANUAL

Example: Under the following conditions,

Sreg: Rn , Dreg=R1, Rn = 8A43H

R1 becomes 008AH and the sign flag is set when

HIS

is executed.

2-9-59

DESCRIPTION OF INSTRUCTIONS

9.41 IBT Rn, #PP

Operation:

0706 DO
immediate data pp:

(pp= -128 -+127)

L---'------'------L...------L_-'---.....L....--..L..---L.-----li--_______ ---J (n=0-15)
015

Description:

Flags affected:

Opcode:

Machine Cycles:

Example:

08 07 06 DO

This instruction loads one byte of immediate data (hexadecimal)
into the low byte of register Rn. Bit 7 of the immediate data is
loaded into bits 8 through 15 of Rn.

B
ALT1
ALT2

(MSB)

: Reset
: Reset
: Reset

CY z

(LSB)

1 I 0 I 1 I 0 I n (OH-FH) (AnH)

(ppH) - pp (OOH- FFH) • -
ROM execution time 6 cycles

RAM execution time 6 cycles

Cache RAM execution time 2 cycles

Since hexadecimal numbers are handled in the assembler as
intergers, without signs, a hexadecimal number of 80H or greater
that is entered as an operand is processed as a number greater
than + 128, exceeding the range -128-+ 127. When this occurs,
the assembler will specify the low byte as the immediate data of
the IBT instruction.

IBT
IBT
IBT

#4
#-128
#OA4H

2-9-60

... 0004H -t Rs
... FF80H -t Rs
... FFA4H -t Rs

SNES DEVELOPMENT MANUAL

9.42 INC Rn

Operation:

Description:

Flags affected:

Opcode:

INC Rn

Machine Cycles:

Example:

(n=O-14)

This instruction increments the contents of the register specified
in the operand Rn by one and stores the result back into the
same register.

The operand can be Ro-R14.

B
ALT1
ALT2
S
Z
(MSB)

1 1 1 0

: Reset
: Reset
: Reset

z
*

: Set if result is negative, else reset.
: Set on zero result, else reset.

(LSB)

1 11 1 n (OH-EH) I (DnH)

ROM execution time 3 cycles

RAM execution time 3 cycles

Cache RAM execution time 1 cycles

When register R12 is 65B1 H, R12 becomes 65B2H when

INC R12

is executed.

2-9-61

9.43 IWT Rn, #XX

Operation:

Description:

Flags affected:

Opcode:

DESCRIPTION OF INSTRUCTIONS

#xx (2-byte hexadecimal immediate data) --t Rn

(n = 0-15, #xx=O-65535)

This instruction loads two bytes of immediate data, #xx (hexa
decimal), to the register specified in the operand, Rn.

B
ALT1
ALT2

(MSB)

: Reset
: Reset
: Reset

z

(LSB)

1 1 1 1 1 11 1 n (OH-FH) (FnH) ITW Rn, #xx I------'----'---~-.....L...------_i
x (OOH-FFH) (Lower Byte)

x (OOH-FFH) (Upper Byte)

The two-byte immediate data in the op code is loaded low
byte first, followed by the high byte.

Machine Cycles: ROM execution time 9 cycles

RAM execution time 9 cycles

Cache RAM execution time 3 cycles

Example: Register Ra becomes 4583H when

IWT Ra, #4583H

is executed.

2-9-62

SNES DEVELOPMENT MANUAL

9.44 JMP Rn

Operation:

Description:

Flags affected:

Opcode:

JMP Rn

Machine Cycles:

Example:

(n=B-13)

This instruction loads the contents of the register specified in the
operand Rn to R15 (program counter) and initiates a program
fetch from the resulting location specified by the program
counter.

The next instruction to be executed will already be in the instruc
tion pipeline of the processor. For this reason one byte from the
pipeline will be executed before the instruction at the branch des
tination is executed. (The execution time for this instruction is not
included in the machine cycles listed below.)

The operand can be register Rs-R13.

B
ALT1
ALT2

(MSB)

: Reset
: Reset
: Reset

CY z

(LSB)

1 1 1 0 1 o 11 1 n (SH-DH) I (9nH)

ROM execution time 3 cycles

RAM execution time 3 cycles

Cache RAM execution time 1 cycles

When register R10 is 0555H and the following program is execut
ed,

PC

0444H
0445H

Opcode

JMP R10
INC R10

the jump destination is 0555H.

2-9-63

9.45 LOB (Rm)

Operation:

Description:

Flags affected:

Opcode:

Machine Cycles:

Note:

(Rm) -7 Dreg (Low Byte)

OOH -7 Dreg (High Byte)

DESCRIPTION OF INSTRUCTIONS

(m=O-11)

This instruction loads one byte of data located at the game pak
RAM address contained in the register specified in the operand
Rm and stores this data in the destination register. The upper
byte of the destination register is loaded with OOH.

Use the RAMB instruction to set the RAM bank. (Refer to
RAMB.)

The destination register is specified in advance using a WITH or
TO instruction. When not specified, this register defaults to Ro.

B
ALT1
ALT2

(MSB)

0

0

0 1

1 0

1

0

: Reset
: Reset
: Reset

CY z

(LSB)

1 I 1 I 0 I 1

m (OH-BH)

(30H)

(4mH)

ROM execution time 11 cycles

RAM execution time 13 cycles

Cache RAM execution time 6 cycles

The GSU waits while the data is loaded from game pak RAM.
The cycles required for this are included in the execution times
given above.

2-9-64

SNES DEVELOPMENT MANUAL

Example: Under the following conditions,

(70:3482H)= 51 H

and when the following program is executed,

LDB (R1)

R7 becomes 0051 H.

2-9-65

9.46 LOW {Rm}

Operation:

Description:

Flags affected:

Opcode:

(Rm) ~ Dreg (Low Byte)

(Rm±1) ~ Dreg (High Byte)

DESCRIPTION OF INSTRUCTIONS

(m=0 11)

When the contents of Rm is:
even, (Rm+ 1)
odd, (Rm-1)

is loaded to the high byte.

The word data located in the game pak RAM address that equals
the contents of register Rm are stored in the destination register.
The game pak RAM address bank is specified using the RAMB
instruction (refer to RAMB).

The destination register is specified in advance using a WITH or
TO instruction. When not specified, this register defaults to Ro.

B IA~T1IA~T21 o~ I S CY Z

0 -
B : Reset
ALT1 : Reset
ALT2 : Reset

(MSB) (LSB)

LOW (Rm) I 0 I 1 0 10 I m (OH BH) I (4mH)

Machine Cycles:

Note:

Example:

ROM execution time 10 cycles

RAM execution time 12 cycles

Cache RAM execution time 7 cycles

While a load is performed from the game pak ROM, the GSU is
in the WAIT state. This execution time is included in the above
machine cycles.

Under the following conditions,

Dreg:Rs, R3=6480H, (70:6480H)=COH, RAMBR=70H

and when the following program is executed,

LOW (R3)

the register Rs becomes C02EH.

2-9-66

SNES DEVELOPMENT MANUAL

9.47 LEA Rn, xx (Refer to IWT Rn, #xx)

Operation:

Description:

Flags affected:

Opcode:

(n=O-15,xx=O-65535)

This instruction loads two bytes of immediate data, #xx (hexa
decimal), to the register specified in the operand Rn.

B
ALT1
ALT2

(MSB)

: Reset
: Reset
: Reset

CY z

(LSB)

1 1 1 1 1 11 1 n (OH-FH) (FnH)
r-~--~~--~----------~

x (OOH-FFH) (Lower Byte)

x (OOH-FFH) (Upper Byte)

The two-byte immediate data in the op code is loaded low
byte first, followed by the high byte.

Machine Cycles:

Example:

ROM execution time

RAM execution time

Cache RAM execution time

Register R3 becomes 4853H when

LEA R3, #4853H

is executed.

2-9-67

9 cycles

9 cycles

3 cycles

9.48 LINK #n

Operation:

Description:

Flags affected:

Opcode:

DESCRIPTION OF INSTRUCTIONS

(n=1-4)
R1S contains address
following LINK instruction

This instruction adds the operand #n to the value contained in
register R1S (program counter) and stores the result in register
R11 . Operand #n can be a number from 1-4. This instruction can
be used to specify a return address in register R11 when jumping
to a subroutine.

B IA~T1IA~T21 o~ I S CY Z

0 -
B : Reset
ALT1 : Reset
ALT2 : Reset

(MSB) (LSB)

LINK #n
I 1 I 0 0 1 n (1 H-4H) I (9nH)

Machine Cycles: ROM execution time 3 cycles

RAM execution time 3 cycles

Cache RAM execution time 1 cycles

Example: Under the following conditions,

R1S: 4368H

and when the following program is executed,

4368 LINK #4
4369 IWT R1S' #74FFH
436C NOP
436B IBT R1, #12H

register R11 becomes 4369H + 2=436BH

2-9-68

SNES DEVELOPMENT MANUAL

9.49 LJMP Rn

Operation:

Description:

Flags affected:

Opcode:

(n=B-13)

Sreg ~ Program Bank Register (PBR)

This instruction loads the register specified as operand, Rn, into
the program counter, R15 and loads the lower byte of the source
register to the program bank register. This allows the program to
jump to addresses in different banks.

The next instruction to be executed will already be in the instruc
tion pipeline of the processor. For this reason one byte from the
pipeline will be executed before the instruction at the branch des
tination is executed. (The execution time for this instruction is not
included in the machine cycles listed below.)

The operand can be any of registers Ra-R13.

z

B : Reset
ALT1 :Res~
ALT2 : Reset

(MSB) (LSB)

0 0 1 1 1
LJMP Rn

1 0 0

1 I 1 I 0 I
1 n (BH-DH)

(3DH)

(9nH)

Machine Cycles:

Example:

ROM execution time 6 cycles

RAM execution time 6 cycles

Cache RAM execution time 2 cycles

Under the following conditions,

R1:0001 H

the program jumps from 00:B006H to 01 :0002H when the follow
ing program is executed.

Bank :Address
00 :8000H
00 :B003H
00 :8004H
00 :8006H

2-9-69

Syntax
IWT R10' #0002H
FROM R1
LJMP R10
NOP

9.50 LM Rn, (xx)

Operation:

Description:

Flags affected:

Opcode:

Machine Cycles:

Note:

Example:

RAM (xx) ~ Rn (low byte)

RAM (xX±1) ~ Rn (high byte)

DESCRIPTION OF INSTRUCTIONS

(n=0-15,xx=0-65535)

When the value of xx is:
even, (xx+ 1)
odd, (xx-1)

is loaded to the high byte.

This instruction loads the data contained in the game pak RAM
address specified in the second operand xx and stores the data
in the register specified in the first operand Rn. The RAMB in
struction is used to specify the bank of the RAM address.

B
ALT1
ALT2

: Reset
: Reset
: Reset

CY z

(MSB) (LSB)

0 0 1 1 1 I 1 I 0 I 1 (3DH)

(FnH) 1 1 1 1 n (OH-FH)

x (OOH-FFH)

x (OOH-FFH)

ROM execution time

(ADRS Lower Byte)

(ADRS Upper Byte)

20 cycles

RAM execution time 21 cycles

Cache RAM execution time 11 cycles

While a load is performed from the game pak RAM, the GSU is
in the WAIT state. This execution time is included in the above
machine cycles.

Under the following conditions,

(70:BACCH) = 28H, (70:BACDH) = 96H, RAMBR=70H

register Rg becomes 9628H when the following program is exe
cuted:

LM Rg, (OBACCH)

2-9-70

SNES DEVELOPMENT MANUAL

9.51 LMS Rn, (yy)

Operation:

Description:

RAM (yy) ~ Rn (low byte)
RAM (yy+ 1) ~ Rn (high byte)

(n=O-15, yy=0-51 0*)

*Note: Selectable RAM address (yy) must be an even number.

This instruction uses a short address method to perform the LM
instruction. The address is shortened by reducing the number of
bytes in the instruction opcode. The instruction loads data from
the gamepak RAM address equal to the immediate number yy
and stores the data in register Rn. The selectable game pak
RAM address may be an even number of 0-510. The RAMS in
struction is used to specify the bank of the RAM address.

0 0 1 1 1 I 1 I 0 I 1

LMS Rn, (yy) 1 0 1 0 n (OH-FH)

(3DH)

(AnH)

kk (OOH-FFH) (Address)

[Short address method]

Machine Cycles:

Note:

This method is used by LMS, SMS, and other instructions to re
duce the number of bytes in the instruction opcode. Only one
byte is used. The actual game pak RAM address is twice that of
the address code. The relationship between yy in the above syn
tax and kk in the opcode is:

yy = kk x 2

ROM execution time
RAM execution time
Cache RAM execution time

17 cycles
17 cycles
10 cycles

The GSU waits while data is loaded from game pak RAM. The
execution time required for this is included in the machine cycles
given above.

2-9-71

Example:

DESCRIPTION OF INSTRUCTIONS

Under the following conditions,

(70:1AAH) = 32H, (70:1ABH) = 92H, RAMBR:70H

register R3 becomes 9232H when the following program is exe
cuted:

Syntax Opcode

LMS R3, (1AAH) 3D A3 05

2-9-72

SNES DEVELOPMENT MANUAL

9.52 LMULT

Operation:

D15 Sreg DO D15 R6 DO

I I 1 •
• • • ·1 1 1

X I 1 1 •
• • • • 1 1 1

• D31 D16 D15 DO

Upper Word Lower Word

D15 / DO D15 DO

I I I· • • • • I I I I I I I

Description:

Flags affected:

Dreg CY Flag R4

This instruction performs 16 x 16-bit signed multiplication using
the source register and register R6. The upper 16 bits of the re
sult are stored in the destination register, and the lower 16 bits
are stored in R4. If Bit 15 of R6 is set, the carry flag is also set to
"1 ".

The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified, the
source and destination registers default to Ro. If R4 is specified
as the destination register, the result will be invalid.

I ~ I A~T1 I A~T21 O~ I : I C.V I ~

Opcode:

LMULT

B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set if the result is negative, else reset
CY : Set if Bit 15 of R6 is "1", reset if "0"
Z : Set if the destination register result is zero,

else reset.

(MSB) (LSB)

I ~I~I:I~ I~ I ~I ~I ~I

2-9-73

(3DH)

(9FH)

Machine Cycles:

Note:

Example:

DESCRIPTION OF INSTRUCTIONS

ROM execution time 10 or14 cycles

RAM execution time 10 or14 cycles

Cache RAM execution time 5 or 9 cycles

The number of cycles varies depending upon the CFG R register
setting.

Under the following conditions,

Sreg: Rg, Dreg: Rs

Rg= B556H, R6= DAABH

the register Rs becomes OAE3H and R4 5C72H when

LMULT

is executed.

2-9-74

SNES DEVELOPMENT MANUAL

9.53 LOB

Operation:

015 Sreg 08 07 DO

I I Upper Byte I II I Lower Byte I I
OOH

015 + DO

Upper Byte

Description:

Flags affected:

Opcode:

LOB

Machine Cycles:

This instruction loads the lower byte of the source register to the
low byte of the destination register. The high byte of the destina
tion register is loaded with OOH.

The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified, the
source and destination registers default to RD.

CY z
*

B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set if the low byte of the source register is

z
negative, else reset.

: Set if low byte of the source register is zero,
else reset.

(MSB) (LSB)

1,-------,1 1_0--L.--
0---J....1_1L...1_11...-1 _1 ...L-

1 .1....-1 0----JI (9 E H)

ROM execution time 3 cycles

RAM execution time 3 cycles

Cache RAM execution time 1 cycles

2-9-75

Example: Under the following conditions,

Sreg: R10, Dreg: R12, R10= FB23H

the register R12 becomes 0023H when

LOB

is executed.

2-9-76

DESCRIPTION OF INSTRUCTIONS

SNES DEVELOPMENT MANUAL

9.54 LOOP

Operation:

Description:

Flags affected:

Opcode:

LOOP

Machine Cycles:

Example:

R12 - 1 ~ R12

If Z Flag=O then R13~ R15 (PC)

This instruction decrements R12 by 1. If the result does not set
the zero flag, the contents of R13 are loaded into R15 and the
program is fetched from the resulting location specified by the
program counter.

If the zero flag is set, the program counter is incremented and
the next instruction is executed.

The instruction at the address following the LOOP instruction is
already loaded into the pipeline. The branch is taken after this in
struction is executed.

CY Z

*

B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set if the register R12 is negative, else reset.
Z : Set if the register R12 is zero, else reset.

(MSB) (LSB)

1 0 1 0 1 11 11 1 1 I 0 I 0 I (3CH)

ROM execution time 3 cycles

RAM execution time 3 cycles

Cache RAM execution time 1 cycles

In the following program,

00:8014 INC R7
00:8015 INC R6
00:8016 LOOP
00:8017 NOP
00:8018 ADD R4

if R13 is 8014H and R12 is other than 0001H, the program jumps
to 00:8014H after the NOP instruction is executed. If R12 is
0001 H, the jump does not happen and the instruction ADD is ex
ecuted.

2-9-77

9.55 LSR

Operation:

Description:

Flags affected:

Opcode:

LSR

Machine Cycles:

Example:

DESCRIPTION OF INSTRUCTIONS

015 Sreg DO CY

0-.1+ 1 -. -. ++~
015 ! DO

1 1 1 I Dreg

This instruction shifts all bits in the source register one bit to the
right and stores the result in the destination register. Bit 15 be
comes "0" and the value of Bit 0 is stored in the carry flag.

The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified, the
source and destination registers default to Ro.

CY z
* *

B : Reset
ALT1 : Reset
ALT2 : Reset
S : Reset
CY : Set if Bit a in source register is "1", else reset
Z : Set on zero result, else reset.

(MSB) (LSB)

1 0 1 0 1 0 1 0 1 0 1 0 I 1 I 1 I (03H)

ROM execution time 3 cycles

RAM execution time 3 cycles

Cache RAM execution time 1 cycles

Under the following conditions,

Sreg: Rs, Dreg: Ro

bit 15 bitO

Rs: 11 10 11 11 1 a 11 1 0 11 1 0 1 a 11 11 11 11 11 11 1 (B53FH)

LSR execution results in:

bit15 bitO Cy

Ro: 1 0 11 10 11 11 10 11 10 11 10101111111111 1 (5A9FH) ~

2-9-78

SNES DEVELOPMENT MANUAL

9.56 MERGE

D15 D8 D7 DO
Upper 8yte I " I Lower 8yte I I

+ DO
Dreg L--..L..-_--I-..II ___ --'----'-'_L...-_L_o_w_e_r _8_e_"----'

Description:

Flags affected:

This instruction stores the high byte of R7 in the high byte of the
destination register and the high byte of Rs in the low byte of the
destination register.

The destination register is specified in advance using a WITH or
TO instruction. When not specified, the register defaults to Ro.

8
ALT1
ALT2
ON

S

CY

Z

Reset
Reset
Reset

CY
*

z
*

Set if the result of (86 or 87 or 814 or 815) is
"1", and reset if "0".

: Set if the result of (87 or 8 15) is "1",
and reset if "0".

: Set if the result of (85 or 86 or 87 or 8 13 or
814 or 815) is "1", reset if "0".

: Set if the result of (84 or 85 or 86 or 87 or 8 12
or 813 or 814 or 815) is "1", reset if "0"

Opcode: (MS8) (LS8)

MERGE 1 0 1 1 1 1 11 1 0 I 0 I 0 I 0 I (70H)

Machine Cycles: ROM execution time 3 cycles

RAM execution time 3 cycles

Cache RAM execution time 1 cycles

2-9-79

Example:

DESCRIPTION OF INSTRUCTIONS

Under the following conditions:

Dreg; Rg, R7=05AAH, Ra=FC33H

Rg becomes 05FCH and the sign, over flow, carry and zero flags
are set when

MERGE

is executed.

2-9-80

SNES DEVELOPMENT MANUAL

9.57 MOVE Rn, Rn'

Operation:

Description:

Flags affected:

Opcode:

Machine Cycles:

Example:

(n, n' = 0-15)

This instruction loads the contents of register Rn', specified in the
second operand, to register Rn, specified in the first operand.

B
ALT1
ALT2

(MSB)

0

0

0 1

0 0

: Reset
: Reset
: Reset

(LSB)

0 n' (OH-FH)

1 n (OH-FH)

(2n'H)

(1 nH)

ROM execution time 6 cycles

RAM execution time 6 cycles

Cache RAM execution time 2 cycles

Under the following conditions,

R14= 4983H, Rs= 9264H

the register Rs becomes 4983H when

MOVE Rs, R14

is executed.

2-9-81

DESCRIPTION OF INSTRUCTIONS

9.58 MOVE Rn, #XX

MACRO INSTRUCTION

Operation:

Conditions:

Description:

Example:

(n = 0-15, #xx=-32768-65535)
(if unsigned, #xx=0-65535)

IF (-128::;xx::;127): (if unsigned, (0::;xx::;127) or
then, use an 1ST instruction (65408::;xx::;65535))
else, use an IWT instruction.

This instruction directly loads hexadecimal immediate data into
register Rn, specified in the first operand. This is a macro instruc
tion and is stored in memory as "IWT Rn, #xx" or "1ST Rn, #pp."
The assembler automatically recognizes whether this should be
replaced with an 1ST instruction or IWT instruction, depending
upon the value of immediate data.

If immediate data is -128 - 127 (unsigned, 0-127 or
65408-65535), it is replaced with an 1ST instruction. Otherwise,
it is replaced with an IWT instruction. Refer to "1ST Rn, #pp" or
"IWT Rn, #xx" for machine cycles, flags affected, and opcode.

MOVE Rs, #070H
MOVE Rs, #OA4H;
MOVE Rs, #-128;

2-9-82

;0070H~Rs
OOA4H~Rs
FF80~Rs

(1ST Rs, #070H)
(IWT Rs, #OA4H)
(1ST Rs, #-128)

SNES DEVELOPMENT MANUAL

9.59 MOVE Rn, (xx)

MACRO INSTRUCTION

Operation:

Conditions:

Description:

Example:

(xx) ~ Rn (low byte)

(xX±1) ~ Rn (high byte)

(n=0-15, xx=O-FFFFH)

Note: When the value xx is even, the contents of (xx+ 1) are
loaded to the high byte of Rn. When the value of xx is
odd, the contents of (xx-1) are loaded to the high byte of
Rn·

If (OOOOH~xx~01 FFH) and xx is even:
then, use an LMS instruction
else, use an LM instruction.

This instruction loads hexadecimal data contained in the game
pak RAM address specified in the second operand and stores
the data in register Rn, specified in the first operand .. The RAMB
instruction is used to specify the bank of the game pak RAM ad
dress (refer to RAMB).

This is a macro instruction and is stored in memory as "LM Rn,
(xx)" or "LMS Rn, (yy)." The assembler automatically recognizes
whether it should be replaced with an LM instruction or an LMS
instruction, depending upon the value of the game pak RAM ad
dress specified.

When the game pak RAM address is an even number of
0-1 FFH, it is replaced with an LMS instruction. Otherwise, it is
replaced with an LM instruction. Refer to "LM Rn, (xx)" or "LMS
Rn, (yy)" for machine cycles, flags affected, and opcode.

Under the following conditions,

(70:BACCH) = 28H, (70:BACDH) = 96H, RAMBR=70H

the register Rg becomes 9628H when the following program is
executed:

MOVE Rg, (OBACCH) ;(70:BACCH)~Rg(Low Byte) (LM Rg, (OBACCH))
;(70:BACDH)~Rg(High Byte)

2-9-83

DESCRIPTION OF INSTRUCTIONS

Also, under the following conditions,

(71 :01AAH) = 32H, (71 :01ABH) = 92H, RAMBR=71 H

the register R3 becomes 9232H when the following program is
executed:

MOVE R3, (1AAH) ;(71 :01AAH)~R3(Low Byte) (LMS R3, (01AAH»
;(71 :01ABH)~R3(High Byte)

2-9-84

SNES DEVELOPMENT MANUAL

9.60 MOVE (xx), Rn

MACRO INSTRUCTION

Operation:

Conditions:

Description:

Example:

Rn (low byte) ~ (xx) (n=O-15,xx=0-FFFFH)

Rn (high byte) ~ (xX±1)

Note: If the value of xx is even, store the high byte of Rn at
(xx+ 1). If the value of xx is odd, store the high byte of Rn
at (xx-1).

If (0000H:s;xx:S;01 FFH) and xx is even:
then, use an SMS instruction,
else, use an SM instruction.

This instruction stores the contents (hexadecimal data) of regis
ter Rn specified in the second operand in the game pak RAM ad
dress specified in the first operand. The RAMB instruction is
used to specify the bank of the game pak RAM address (refer to
"RAMB").

This macro instruction is stored in memory as "SM (xx), Rn" or
"SMS (yy) , Rn." The assembler automatically recognizes wheth
er it should be replaced with an SM instruction or an SMS in
struction, depending upon the value of the game pak RAM
address specified.

When the game pak RAM address is an even number of
0-1 FFH, it is replaced with an SMS instruction. Otherwise, it is
replaced with an SM instruction. Refer to "SM (xx), Rn" and
"SMS (yy), Rn" for machine cycles, flags affected, and opcode.

Under the following conditions,

Rg: BACDH, and RAMBR=71 H

when the following program is executed,

MOVE (9CDEH), Rg ;Rg (Low Byte)~(71 :9CDEH) (SM (9CDEH), Rg)
;Rg (High Byte)~(71 :9CDFH)

the result is (71 :9CDEH)=CDH, (71 :9CDFH)=BAH

2-9-85

DESCRIPTION OF INSTRUCTIONS

Also, under the following conditions,

R2: 3248H, and RAMBR=70H

when the following program is executed,

MOVE (136H), R2 ;R2 (Low Byte)~(70:0136H) (SMS (136H), R2)
;R2 (High Byte)~(70:0137H)

the result is (70:0136H)=48H, (70:0137H)=32H

2-9-86

SNES DEVELOPMENT MANUAL

9.61 MOVEB Rn, (Rn')

MACRO INSTRUCTION

Operation:

Conditions:

Description:

Example:

(Rn') ~ Rn (Low Byte)

OOH ~Rn (High Byte)

If n=O:

(n=0 15, n'=0 11)

then, use only LDB instruction,
else, use TO instruction and LDB instruction.

This instruction loads one byte of data located at the game pak
RAM address equal to the contents of register Rn', specified by
the second operand and stores this data in the register specified
in the first operand. The high byte of the destination register is
loaded with OOH. The register identified in the second operand is
selectable from Ro R11 . The RAMB instruction is used to specify
the game pak RAM bank (refer to "RAMB").

This macro instruction is stored in memory as "LDB (Rm)" or "TO
Rn" + "LDB (Rm)." The assembler automatically recognizes
whether or not the TO instruction is required. When n does not
equal 0, the TO instruction is added. Refer to "LDB (Rm)" and
"TO Rn" for machine cycles, flags affected, and opcode.

Under the following conditions,

R1=3482H, (70:3482H)=51 H, RAMBR=70H

when the following program is executed,

MOVEB R7, (R1) ;(R1)~R7 (Low Byte) (TO R7+LDB (R1))

;00H~R7 (High Byte)

register R7 becomes 0051 H.

Also, under the following conditions,

R3=3581 H, (70:3581 H)=9AH, RAMBR=70H

when the following program is executed,

MOVEB Ro, (R3) ;(R3)~Ro (Low Byte) (LDB (R3))

;OOH~Ro (High Byte)

register Ro becomes 009AH.

2-9-87

DESCRIPTION OF INSTRUCTIONS

9.62 MOVEB (Rn'), Rn

MACRO INSTRUCTION

Operation:

Conditions:

Description:

Example:

Rn (low byte) ~ (Rn')

If n=O:

(n=1-15, n'=0-11)

then, use only STB instruction,
else, use FROM instruction and STB instruction.

This instruction stores the contents of the low byte of register Rn
specified in the second operand at the game pak RAM address
equal to the contents of register Rn', specified in the first oper
and. The register identified in the first operand is selectable from
Ro-R11 . The RAMB instruction is used to specify the game pak
RAM bank (refer to "RAMB").

This macro instruction is stored in memory as "STB (Rm)" or
"FROM Rn" + "STB (Rm)'" The assembler automatically recog
nizes whether or not the FROM instruction is required. When n
does not equal 0, the FROM instruction is added. Refer to "STS
(Rm) and "FROM Rn" for machine cycles, flags affected, and op
code.

Under the following conditions,

Rs=3843H, R11 =94F1 H, RAMBR=71 H

when the following program is executed,

MOVEB (Rn), Rs ;Rs (Low Byte)~(R11) (FROM Rs+STB (R11»)

the result is (71 :94F1 H)=43H.

Also, under the following conditions,

Ro=89EOH, R3=438BH, RAMBR=70H

when the following program is executed,

MOVEB (R3), Ro ;Ro (Low Byte)~(R3) (STB (R3))

the result is (70:438BH)=43H.

2-9-88

SNES DEVELOPMENT MANUAL

9.63 MOVES Rn, Rn'

Operation:

Description:

Flags affected:

Opcode:

Machine Cycles:

Example:

(n, n' = 0-15)

This instruction loads the contents of register Rn', specified in the
second operand, to register Rn, specified in the first operand.
Flags are set according to the data loaded.
(Refer to MOVE Rn, Rn'.)

CY z
*

B : Reset
ALT1 : Reset
ALT2 : Reset
ON : Set if Bit 7 is "1", else reset
S : Set if Bit 15 is "1", else reset
Z : Set when data is zero, else reset

(MSB)

0 0 1 0

1 0 1 1

ROM execution time

RAM execution time

(LSB)

n' (OH-FH) (2n' H)

n (OH-FH) (BnH)

Cache RAM execution time

6 cycles

6 cycles

2 cycles

When R7 is 4983H and

MOVES R1o, R7

is executed, the register R10 becomes 4983H and the overflow
flag is set.

2-9-89

DESCRIPTION OF INSTRUCTIONS

9.64 MOVEW Rn, (Rn')

MACRO INSTRUCTION

Operation:

Conditions:

Description:

Example:

(Rn') ~ Rn (Low Byte)

(Rn'±1) ~ Rn (High Byte)

(n=0 15, n'=0 11)

Note: If the contents of Rn' are even, store the address equal
to the contents of (Rn'+ 1) in the high byte of Rn' If the
contents of Rn' are odd, store the address equal to
(Rn'-1) in the high byte of Rn.

If n=O:
then, use only LDW instruction,
else, use TO instruction and LDW instruction.

This instruction loads hexadecimal data from the game pak RAM
address equal to the contents of register Rn' specified in the sec
ond operand and stores it into register Rn specified by the first
operand. The game pak RAM address bank is specified using
the RAMB instruction (refer to RAMB).

This macro instruction is stored in memory as "LDW (Rm)" or ''TO
Rn" + "LDW (Rm)." The assembler automatically recognizes
whether or not the TO instruction is required. When n is not
equal to 0, the TO instruction is added. Refer to "LDW (Rm)" and
"TO Rn" for machine cycles, flags affected, and opcode.

Under the following conditions,

R3=6480H, (71 :6480H)=2EH, (71 :6481 H)=COH,
RAMBR=71H

and when the following program is executed,

MOVEW R5, (R3) ;(R3)~R5(Low Byte) (TO R5 + LDB (R3))
;(R3+ 1)~R5(High Byte)

register R5 becomes C02EH.

Also, under the following conditions,

R6=0822H, (70:0822H)=43H, (70:0823H)=96H,
RAMBR=70H

and when the following program is executed,

MOVEW Ro, (R6) ;(R6)~Ro(Low Byte) (LDB (R6))
;(R6+ 1)~Ro(High Byte)

register Ro becomes 9643H.

2-9-90

SNES DEVELOPMENT MANUAL

9.65 MOVEW (Rn'), Rn

MACRO INSTRUCTION

Operation:

Conditions:

Description:

Example:

Rn (low byte) ~ (Rn') (n=0-15, n'=O-11)

Rn (high byte) ~ (Rn' ±1)

Note: If the contents of Rn' are even, store the high byte of Rn
into the address equal to the contents of (Rn' + 1). If the
contents of Rn' are odd, store the high byte of Rn into
the address equal to the contents of (Rn'-1).

If n=O:
then, use only STW instruction,
else, use FROM instruction and STW instruction.

This instruction stores the contents (hexadecimal data) of regis
ter Rn specified in the second operand into the game pak RAM
address which is equal to the value of register Rn' specified in
the first operand. The game pak RAM address bank is specified
using the RAMB instruction (refer to RAMB). The operand n' can
be a register from Ro-R11 .

This macro instruction is stored in memory as "STW (Rm)" or
"FROM Rn" + "STW (Rm}'" The assembler automatically recog
nizes whether or not the FROM instruction is required. When n is
not equal to 0, the FROM instruction is added. Refer to "STW
(Rm) and "FROM Rn" for machine cycles, flags affected, and op
code.

Under the following conditions,

Rg=BFA3H, R10=4444H, RAMBR=71 H

and when the following program is executed,

MOVEW (R10), Rg ;Rg(Low Byte)~(R10} (FROM Rg+STW (R10))
;Rg(High Byte)~(R10+1}

the result is (71 :4444H}=A3H, (71 :4445H}=BFH.

2-9-91

DESCRIPTION OF INSTRUCTIONS

Also, under the following conditions,

Ro=3151H, R6=92AOH, RAMBR=71H

and when the following program is executed,

MOVEW (R6), Ro ;Ro (Low Byte)-7(R6) (STW (R6))
;Ro (High Byte)-7(R6+ 1)

the result is (71 :92AOH)=51 H, (71 :92A 1 H)=31 H.

2-9-92

SNES DEVELOPMENT MANUAL

9.66 MULT Rn

Operation:

Description:

Flags affected:

Opcode:

MULT Rn

Machine Cycles:

Note:

Example:

Sreg (low byte) * Rn (low byte) ~ Dreg (n=0 15)

This instruction performs a x a-bit signed multiplication using the
low byte of the source register and the low byte of register Rn.
The result is stored in the destination register.

The source and destination registers are specified in advance
using a FROM, WITH, or TO instruction. When not specified, the
source and destination registers default to Ro.

The operand can be a register Ro R1S.

CY z
*

B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set when the result is negative, else reset.
Z : Set on zero result, else reset.

(MSB)

ROM execution time

RAM execution time

(LSB)

n (OH-FH) I (8nH)

3 or 5 cycles

3 or 5 cycles

Cache RAM execution time 1 or 2 cycles

The number of cycles depends upon the CFGR register.

Under the following conditions,

Sreg: Rs, Dreg: R2

Rs=52CFH,R1=63CFH

the register R2 becomes 0961 H when

MULT R1

is executed.

2-9-93

9.67 MULl #n

Operation:

Description:

Flags affected:

Opcode:

DESCRIPTION OF INSTRUCTIONS

Sreg (low byte) * #n ~ Dreg (n=O 15)

This instruction performs a x a-bit signed multiplication using the
low byte of the source register and the immediate data specified
in the operand #n. The result is stored in the destination register.

The source and destination registers are specified in advance
using a FROM, WITH, or TO instruction. When not specified, the
source and destination registers default to Ro.

The operand can be immediate data from 0 15.

Cy z
*

B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set when the result is negative, else reset.
Z : Set on zero result, else reset.

(MSB) (LSB)

0 0 1 1 1 0
MULT #n

1 0 0

I 1 I 1 I
0 n (OH FH)

(3EH)

(8nH)

Machine Cycles:

Note:

Example:

ROM execution time 6 or 8 cycles

RAM execution time 6 or 8 cycles

Cache RAM execution time 2 or 3 cycles

The number of cycles depends upon the CFG R register.

Under the following conditions,

Sreg: R3, Dreg:R4' R3= 95C6H

the register R4 becomes FDF6H when

MULT #9

is executed.

2-9-94

SNES DEVELOPMENT MANUAL

9.68 NOP

Operation:

Description:

Flags affected:

Opcode:

NOP

PC ~ PC+1

This instruction causes the processor to idle for one cycle and in
crement the program counter by one.

B IA~T1IA~T21 o~ I S

I
CY

I
Z

0

B : Reset
ALT1 : Reset
ALT2 : Reset

(MSB) (LSB)

I 0 I 0 o I 0 I 0 I 0 I 0 I 1 I (01 H)

Machine Cycles: ROM execution time

RAM execution time

3 cycles

3 cycles

Cache RAM execution time 1 cycles

2-9-95

9.69 NOT

Operation:

Description:

Flags affected:

Opcode:

NOT

Machine Cycles:

Example:

DESCRIPTION OF INSTRUCTIONS

Sreg --7 Dreg

This instruction calculates the 1 's complement of the source reg
ister and stores the result in the destination register.

The source and destination registers are specified in advance
using a FROM, WITH, or TO instruction. When not specified, the
source and destination registers default to Ro.

CY z
*

B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set when the result is negative, else reset.
Z : Set on zero result, else reset.

(MSB) (LSB)

1011101011 1 1 1 1 1 (4FH)

ROM execution time 3 cycles

RAM execution time 3 cycles

Cache RAM execution time 1 cycles

Under the following conditions,

Sreg: Rg, Dreg: R13

Bit15 BitO
Rg: 1 11 0 1 1 11 1 0 1 1 1 11 1 1 01 1 1 1 1 0 1 0 1 1 1 01 01 (B764H)

the execution of

NOT

results in:

Bit15 BitO
R13: 1 01 1 1 01 0 11 1 01 01 01 11 01 011 11 1 01 11 1 1 (489BH)

2-9-96

SNES DEVELOPMENT MANUAL

9.70 OR Rn

Operation:

Description:

Flags affected:

Opcode:

Machine Cycles:

(n=1-15)

This instruction performs logical bit-wise OR on corresponding
bits of the source register and the register specified in the oper
and Rn' The result is stored in the destination register.

The source and destination registers are specified in advance
using a FROM, WITH, or TO instruction. When not specified, the
source and destination registers default to Ro.

The operand can be a register R1-R15.

CY z
*

B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set when the result is negative, else reset.
Z : Set on zero result, else reset.

(MSB) (LSB)

n (1 H-FH) I (CnH)

ROM execution time 3 cycles

RAM execution time 3 cycles

Cache RAM execution time 1 cycles

2-9-97

Example: Under the following conditions,

Sreg: R4, Dreg: Rs

DESCRIPTION OF INSTRUCTIONS

Bit15 BitO
R4: I 0 I 1 1 1 1 0 1 0 1 01 1 1 1 1 01 1 1 1 1 0 I 1 1 01 01 01 (6368H)

Bit15 BitO
R2: I 01 0 1 0 11 1 0 1 1 1 1 1 0 I 1 I 0 I 0 1 0 1 1 1 1 1 0 I 0 1 (168CH)

the register Rs becomes:

Bit15 BitO
Rs: I 01 1 1 1 11 1 0 1 1 1 1 1 1 1 11 1 1 1 1 0 1 1 1 1 1 01 0 1 (77ECH)

when

is executed.

2-9-98

SNES DEVELOPMENT MANUAL

9.71 OR #n

Operation:

Description:

Flags affected:

Opcode:

OR#n

Machine Cycles:

Example:

Sreg OR #n ~ Dreg (n=1-15)

This instruction performs logical bit-wise OR on corresponding
bits of the source register and the immediate data specified in
the operand #n. The result is stored in the destination register.

The source and destination registers are specified in advance
using a FROM, WITH, or TO instruction. When not specified, the
source and destination registers default to Ro.

CY z
*

B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set when the result is negative, else reset.
Z : Set on zero result, else reset.

(MSB)

0 0 1 1 1

1 1 0 0

ROM execution time

I 1 I 1 I
n (1 H-FH)

(LSB)

0 (3EH)

(CnH)

6 cycles

RAM execution time 6 cycles

Cache RAM execution time 2 cycles

Under the following conditions,

Sreg: R7 , Dreg: Rs
Bit15 BitO

Ri 1 01 11 011 11 1 11 11 11 11 01 1 10 1 0 1 01 11 01 (5FA2H)

the register Rs becomes:
Bit15 BitO

Rs: 1 01 1 1 011 11 1 11 11 1 1 11 01 1 1 0 1 0 1 11 11 11 (5FA7H)

when

OR#5H

is executed.

2-9-99

9.72 PLOT

Description:

Flags affected:

I

Opcode:

PLOT

DESCRIPTION OF INSTRUCTIONS

This instruction plots the color code specified by the COLOR or
GETC instruction to locations X and Y specified by R1 and R2.

After plotting, R1 will be incremented.

B IA~T1IA~T21 o~ I S

I
CY

I
Z

0

B : Reset
ALT1 : Reset
ALT2 : Reset

(MSB) (LSB)

1 0 1
1 0 1 0 11 1 1 1 0 1 0 1 (4CH)

Machine Cycles: ROM execution time 3-48 cycles

Note:

RAM execution time 3-51 cycles

Cache RAM execution time 1-48 cycles

Because this instruction uses the RAM buffer, the number of ma
chine cycles varies depending upon the program.

2-9-100

SNESDEVELOPMENTMANUAL

9.73 RAMB

Operation:

Description:

Flags affected:

Opcode:

RAMS

Machine Cycles:

Example:

Sreg -7 RAMSR

This instruction moves the low byte of the source register into the
game pak RAM bank register in order to specify the game pak
RAM bank when transferring data between game pak RAM and
multi-purpose registers. Note that the SCSR is used with the
RAMSR to specify the bank for plotting. The game pak RAM
bank register can only be changed with the RAMS instruction.
The initial value of this register is invalid.

The source register is specified in advance using a FROM or
WITH instruction. When not specified, the register defaults to
Ro·

CY z

S : Reset
ALT1 :Res~
ALT2 :Res~

(MSS) (LSB)

I ~I~I:I~ I~I ~I ~I~I (3EH)

(DFH)

ROM execution time 6 cycles

RAM execution time 6 cycles

Cache RAM execution time 2 cycles

Under the following conditions,

Sreg: R3, R3= 0170H

the RAM bank register becomes 70H when

RAMS

is executed.

2-9-101

9.74 ROL

Operation:

Description:

Flags affected:

Opcode:

ROL

Machine Cycles:

DESCRIPTION OF INSTRUCTIONS

,
D15 Dreg DO

I I • • • I I

This instruction shifts all bits in the source register one bit to the
left. Bit 15 is shifted to the carry flag and the carry flag is shifted
to Bit O. The result is stored in the destination register.

The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified,the
source and destination registers default to Ro.

CY z
* *

B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set if result is negative, else reset.
CY : Set if Bit 15 in source register is "1",

else reset.
z : Set on zero result, else reset.

(MSB) (LSB)

1010101010 1 I 0 I 0 I (04H)

ROM execution time 3 cycles

RAM execution time 3 cycles

Cache RAM execution time 1 cycles

2-9-102

SNES DEVELOPMENT MANUAL

Example: Under the following conditions,

Sreg: Ra, Dreg: R4
Cy bit15 bitO

[D Ra: I 0 I 0 I 0 11 11 11 1 0 11 1 0 11 1 0 1 0 11 1 0 11 11 I (1 D4BH)

executing ROL results in:
Cy bit15 bitO

@] R4: 1 0 1 0 11 11 11 1 0 11 1 0 11 1 0 1 0 11 1 0 11 11 11 I (3A97H)

2-9-103

9.75 ROMB

Operation:

Description:

Flags affected:

Opcode:

ROMB

Machine Cycles:

Example:

DESCRIPTION OF INSTRUCTIONS

Sreg ~ ROMBR

This instruction moves the low byte of the source register into the
game pak ROM bank register in order to specify the game pak
ROM bank when loading data from game pak ROM. The game
pak ROM bank register can only be changed with the ROMB in
struction, but the contents can not be read. The initial value of
this register is invalid.

The source register is specified in advance using a FROM or
WITH instruction. When not specified, the source register de
faults to Ro.

CY z

B : Reset
ALT1 :Res~
ALT2 :Res~

(MSB) (LSB)

I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~::)
ROM execution time

RAM execution time

Cache RAM execution time

Under the following conditions,

Sreg: Rs, Rs= 0046H

the ROMBR becomes 46H when

ROMB

is executed.

2-9-104

6 cycles

6 cycles

2 cycles

SNES DEVELOPMENT MANUAL

9.76 ROR

Operation:

Description:

Flags affected:

Opcode:

ROR

Machine Cycles:

I I • • • I I
This instruction shifts all bits in the source register one bit to the
right. Bit 0 is shifted to the carry flag and the carry flag is shifted
to Bit 15. The result is stored in the destination register.

The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified, the
source and destination registers default to Ro.

B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set if result is negative, else reset.
CY : Set if Bit 0 in source register is "1",

else reset.
Z : Set on zero result, else reset.

(MSB) (LSB)

1 1 1 0 1 0 11 1 0 1 1 1 1 1 1 1 (97H)

ROM execution time 3 cycles

RAM execution time 3 cycles

Cache RAM execution time 1 cycles

2-9-105

Example: Under the following conditions,

Sreg: R10' Dreg: R12

DESCRIPTION OF INSTRUCTIONS

CY bit15 bitO

~ R10:l o 10 10 11 11 11 10 11 1011101011101111 I (1 D4BH)

executing ROR results in:

Cy bit15 bitO

~ R1211 10 10 10 11 11 11 10 11 10 11 1010111011 1 (8EA5H)

2-9-106

SNES DEVELOPMENT MANUAL

9.77 RPIX

Operation:

Description:

Flags affected:

Opcode:

PIXEL COLOR from game pak RAM ~ Dreg

This instruction loads the color data stored in game pak RAM
and stores it in the destination register. Because data in game
pak RAM is in the PPU format, it is first read to the color matrix
and subsequently stored in the destination register. The data is
then read from game pak RAM to the color matrix.

CY z
*

B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set when the result is negative, else reset.
Z : Set on zero result, else reset.

(MSB) (LSB)

RPIX 1 ~I ~ I: I: 1 ~ 1 ~ 1 ~I: 1
(3DH)

(4CH)

Machine Cycles: ROM execution time

RAM execution time

Cache RAM execution time

2-9-107

24-80 cycles

24-78 cycles

20-74 cycles

9.78 SBC Rn

Operation:

Description:

Flags affected:

Opcode:

SCB Rn

Machine Cycles:

Example:

DESCRIPTION OF INSTRUCTIONS

Sreg - Rn - CY Flag~ Dreg (n=O-15)

This instruction subtracts the contents of the register specified in
the operand and the carry flag from the source register and
stores the result in the destination register.

Source and destination registers are specified in advance using
a WITH, FROM, or TO instruction. When not specified, the
source and destination registers default to Ro.

CY z
* *

B : Reset
ALT1 : Reset
ALT2 : Reset
O/V : Set on signed overflow, else reset
S : Set when the result is negative, else reset.
CY : Set on unsigned overflow, else reset
Z : Set on zero result, else reset

(MSB)

0 0 1 1 1

0 1 1 0

ROM execution time

I 1 I 0 I
n (OH-FH)

(LSB)

1 (3DH)

(6nH)

6 cycles

RAM execution time 6 cycles

Cache RAM execution time 2 cycles

Under the following conditions:

Sreg: R4, Dreg: R6, R4=5682H, R5=3609H, CY Flag=1

register R6 becomes 2079H and the carry flag is reset when

SBC Rs

is executed.

2-9-108

SNES DEVELOPMENT MANUAL

9.79 SBK

Operation:

Description:

Flags affected:

Opcode:

Sreg ~ (Last game pak RAM address used)

The game pak RAM address accessed when data is transferred
between game pak RAM and a multi-purpose register, for exam
ple the LD and ST instructions, is buffered internally. When data
is to be stored to the last accessed game pak RAM address, this
buffer is used so that the address does not have to be specified
again in the op code. This is called "bulk processing".

This instruction uses bulk processing to store the word data con
tained in the source register to RAM.

The source register is specified in advance using a WITH or
FROM instruction. When not specified, the register defaults to
Ro·

CY z

B : Reset
ALT1 :Res~
ALT2 :Res~

(MSB) (LSB)

SBK I 1 I 0 I 0 1 o I 0 I 0 I 0 I (90H)

Machine Cycles: ROM execution time 3-8 cycles

RAM execution time 7 -11 cycles

Cache RAM execution time 1-6 cycles

Example: Under the following conditions,

(70:3230H)=51 H, (70:3231 H)=49H, RAMBR=70H

executing,

LM R1, (3230H)
INC R1
SBK

will result in R1=4952H, (70:3230H)=52H, and (70:3231 H)=49H.

2-9-109

DESCRIPTION OF INSTRUCTIONS

9.80 SEX

Operation:

D15 D8 D7 D6 DO

Dreg

D15

Description:

Flags affected:

Opcode:

UpperB~e LowerB~e

Lower B~e
D8 D7 D6 DO

This instruction performs signed expansion of the low b~e of the
source register, converts it to word data and stores it in the desti
nation register.

This means that Bit 7 of the source register is stored in Bits 8 -
15 of the destination register. The low b~e is loaded directly
from the source register to the destination register.

The source and destination registers are specified in advance .
using a WITH, FROM, or TO instruction. When not specified, the
source and destination registers default to RD.

CY z
*

B : Reset
ALT1 : Reset
ALT2 :Res~
S : Set if the result is negative, else reset.
Z : Set on zero result, else reset.

(MSB) (LSB)

SEX I 1 I 0 0 1 o 1 I 0 I 1 I (9SH)

Machine Cycles: ROM execution time 3 cycles

RAM execution time 3 cycles

Cache RAM execution time 1 cycles

2-9-110

SNES DEVELOPMENT MANUAL

Example: Under the following conditions,

Sreg: Rs, Dreg:R1' Rs= 9284H

the register R1 becomes FF84H when

SEX

is executed.

2-9-111

9.81 8M (xx), Rn

Operation:

Description:

Flags affected:

Opcode:

Rn (low byte) ~ (xx)

Rn (high byte) ~ (xx+ 1)

DESCRIPTION OF INSTRUCTIONS

(n=0-15,xx=0-65535)

When the contents of Rn are
even, the high byte is
stored at address (Rn+ 1);

When the contents of Rn are
odd, the high byte is
stored at address (Rn-1).

This instruction stores the contents of register Rn, specified in
the second operand, to the game pak RAM address which
equals the value of (xx), the first operand. The RAM bank must
be specified with the RAMB instruction. (Refer to RAMB.)

B IA~T1IA~T21 o~ I 8 CY Z

0

B : Reset
ALT1 : Reset
ALT2 : Reset

(M8B) (L8B)

0 0 1 1 1 I 1 I 1 I 0

8M (xx), Rn
1 1 1 1 n (OH-FH)

(3EH)

(FnH)

Machine Cycles:

Note:

Example:

x (OOH-FFH)

x (OOH-FFH)

ROM execution time

RAM execution time

(ADR8 Lower Byte)

(ADR8 Upper Byte)

12-17 cycles

16-20 cycles

Cache RAM execution time 4-9 cycles

Because this instruction uses the RAM buffer, the number of cy
cles varies depending upon the program.

Under the following conditions,

R4= 438CH and RAMBR=70H

the following program execution,

8M (OB492H), R4

will result in (70:B492H) =8CH, (70:B493H) = 43H.

2-9-112

SNES DEVELOPMENT MANUAL

9.82 SMS (yy), Rn

Operation:

Description:

Flags affected:

Opcode:

Rn (low byte) ~ (yy) (n=0 15, yy=0 51 0*)
Rn (high byte) ~ (yy+ 1)

*Note: Selectable RAM address (yy) must be an even number.

Similar to SM, this instruction loads word data from register Rn,
specified in the second operand, and stores it in the game pak
RAM address equal to the value specified in the first operand,
yy. The selectable address is an even number 0 510. The bank
is specified with the RAMB instruction. This instruction uses the
short address method to reduce the number of bytes in the in
struction code.

B IA~T1IA~T21 o~ I S CY Z

0 -
B : Reset
ALT1 : Reset
ALT2 : Reset

(MSB) (LSB)

0 0 1 1 1 I 1 I 1 I 0

SMS (yy) , Rn
1 1 1 1 n (OH FH)

(3EH)

(AnH)

kk (OOH FFH) (Address)

[Short address method]

Machine Cycles:

Note:

This method is used by LMS, SMS and other instructions to re
duce the number of bytes in the instruction code. One byte is
used for the address. The selectable address may be an even
number 0 510. The relationship between yy in the syntax and kk
in the opcode is:

yy = kk x 2

ROM execution time

RAM execution time

Cache RAM execution time

9 14 cycles

13 17 cycles

3 8 cycles

Because this instruction uses the RAM buffer, the number of ma
chine cycles varies depending upon the program.

2-9-113

Example: Under the following conditions,

Register R11 = ABCDH, RAMBR=71 H

the following program is execution,

Syntax

SMS (194H), R11

DESCRIPTION OF INSTRUCTIONS

Opcode

3E AB CA

will result in (71 :0194H) = CDH, (71 :0195H) = ABH. The relation
ship between syntax and opcode is as shown above.

2-9-114

SNES DEVELOPMENT MANUAL

It·····

9.83 STB (Rm)

Operation:

Description:

Flags affected:

Opcode:

Machine Cycles:

Note:

Example:

(m=O-11)

This instruction stores the low byte of the source register in the
game pak RAM address equal to the value in the register speci
fied in the operand. The operand can be a register Ro-R11 . The
game pak RAM bank must be specified with the RAMB instruc
tion.

The source register is specified in advance using a WITH or
FROM instruction. When not specified, the register defaults to
Ro·

CY z

B : Reset
ALT1 : Reset
ALT2 :Res~

(MSB) (LSB)

0 0 1

0 0 1

1

1

1 I 1 I 0 I 1

m (OH-BH)

(3DH)

(3mH)

ROM execution time 6-9 cycles

RAM execution time 8-14 cycles

Cache RAM execution time 2-5 cycles

Because this instruction uses the RAM buffer, the number of ma
chine cycles varies depending upon the program.

Under the following conditions,

Sreg:R5, R5=216CH, Rs=9A34H, RAMBR=70H

and when the following program is executed,

STB (Rs)

the result is (70:9A34H)=6CH.

2-9-115

9.84 STOP

Operation:

Description:

Flags affected:

DESCRIPTION OF INSTRUCTIONS

o ~ Go flag

This instruction resets the GSU GO flag and stops the processor.
When this instruction is executed and the GSU stops, the Super
NES IRQ signal is initiated.

B : Reset
ALT1 :Res~
ALT2 : Reset

Opcode: (MSB) (LSB)

STOP I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I (OOH)

Machine Cycles: ROM execution time 3 cycles

RAM execution time 3 cycles

Cache RAM execution time 1 cycles

2-9-116

SNES DEVELOPMENT MANUAL

9.85 STW (Rm)

Operation:

Description:

Flags affected:

Opcode:

Machine Cycles:

Note:

Example:

Sreg (low byte) ~ (Rm)

Sreg (high byte) ~ (Rm + 1)

(m=O 11)

When the contents of Rm are
even, the high byte is
stored at address (Rm+ 1);

When the contents of Rm are
odd, the high byte is
stored at address (Rm-1).

This instruction stores the contents of the source register into the
game pak RAM address specified in the operand, Rm' The RAM
bank must be specified with the RAMB instruction. The operand
can be a register from Ro Rn .

The source register is specified in advance using WITH or
FROM. When not specified, the register defaults to Ro.

CY z

B : Reset
ALT1 : Reset
ALT2 :Res~

(MSB) (LSB)

I 0 I 0 1 111m (OH-BH) 1 (3mH)

ROM execution time 3 8 cycles

RAM execution time 7 11 cycles

Cache RAM execution time 1 6 cycles

Because this instruction uses the RAM buffer, the number of cy
cles varies depending upon the program.

Under the following conditions,

Sreg: R1o, R10=9326H, R2 :5872H, RAMBR=70H

and when the following program is executed,

STW (R2)

the result is (70:5872H}=26H, (70:5873H}=93H.

2-9-117

9.86 SUB Rn

Operation:

Description:

Flags affected:

Opcode:

SUB Rn

Machine Cycles:

Example:

DESCRIPTION OF INSTRUCTIONS

Sreg - Rn ~ Dreg (n=O 15)

This instruction subtracts the contents of the register specified in
the operand from the source register and stores the result in the
destination register.

Source and destination registers are specified in advance using
a WITH, FROM, or TO instruction. When not specified, the
source and destination registers default to Ro.

The operand can be any of registers Ro R15.

B : Reset
ALT1 : Reset
ALT2 : Reset
ON : Set on signed overflow, else reset.
S : Set if the result is negative, else reset
CY : Set on unsigned overflow, else reset

(Set on adder overflow.)
Z : Set if result is zero.

(MSB) (LSB)

I 0 I 1 1 I 0 I n (OH-FH) I (6nH)

ROM execution time

RAM execution time

Cache RAM execution ti me

Under the following conditions:

3 cycles

3 cycles

1 cycles

Sreg: R5,Dreg: R4, R5=735AH, Rs=426BH

the register R4 becomes 30EFH when

SUB Rs

is executed.

2-9-118

SNES DEVELOPMENT MANUAL

9.87 SUB #n

Operation:

Description:

Flags affected:

Opcode:

SUB#n

Machine Cycles:

Example:

Sreg - #n ~ Dreg (n=0-15)

This instruction subtracts the immediate data specified in the op
erand from the contents of the source register and stores the re
sult in the destination register.

The source and destination registers are specified in advance
using a WITH, FROM, or TO instruction. When not specified, the
source and destination registers default to Ro.

The operand can be immediate data from 0-15.

CY z
* *

B : Reset
ALT1 : Reset
ALT2 : Reset
ON : Set on signed overflow, else reset.
S : Set if the result is negative, else reset
CY : Set on unsigned borrow, else reset
Z : Set if result IS zero.

(MSB)

0 0 1

0 1 1

1 1 1 1 I 1 I
0 n (OH-FH)

(LSB)

0 (3EH)

(6nH)

ROM execution time 6 cycles

RAM execution time 6 cycles

Cache RAM execution time 2 cycles

Under the following conditions:

Sffig:Ro,Dffig:RoI Ro=329BH

the register Ro becomes 3291 H when

SUB #10

is executed.

2-9-119

9.88 SWAP

Operation:

Description:

Flags affected:

Opcode:

SWAP

Machine Cycles:

Example:

Sreg (low byte) ~ Dreg (high byte)

Sreg (high byte) ~ Dreg (low byte)

DESCRIPTION OF INSTRUCTIONS

This instruction swaps the low byte and high byte of the source
register and stores the result in the destination register.

The source and destination registers are specified in advance
using a FROM, WITH, or TO instruction. When not specified, the
source and destination registers default to Ro.

CY z
*

B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set when the result is negative, else reset.
Z : Set on zero result, else reset.

(MSB) (LSB)

I 0 I 1 I 0 I 0 I 1 I 1 I 0 I 1 I (4DH)

ROM execution time

RAM execution time

Cache RAM execution time

Under the following conditions:

3 cycles

3 cycles

1 cycles

Sreg: R3, Dreg: R13, R3=48DOH

the register R13 becomes D048H when

SWAP

is executed.

2-9-120

SNES DEVELOPMENT MANUAL

9.89 TO Rn

REGISTER PREFIX INSTRUCTION

Operation:

Description:

Flags affected:

Opcode:

TO Rn

Machine Cycles:

Example:

If B Flag = 0 then set Dreg to Rn
else Sreg ~ Rn (n=O 15)

This instruction specifies register Rn as the destination register.
The destination register can be any of registers Ro R1S.

If the B flag has been set (i.e., if a WITH instruction was execut
ed immediately prior to this instruction) the contents of the
source register are loaded to Rn (refer to MOVE Rn, Rn').

CY z

No flags affected

(MSB) (LSB)

I 0 I 0 0 1 n (OH FH) I (1 nH)

ROM execution time 3 cycles

RAM execution time 3 cycles

Cache RAM execution time 1 cycles

Under the following conditions:

R6= 7106H, R3=0028H

the register R4 becomes 712EH when the following program is
executed.

2-9-121

9.90 UMULT Rn

Operation:

Description:

Flags affected:

Opcode:

DESCRIPTION OF INSTRUCTIONS

Sreg (low byte) * Rn (low byte) ~ Dreg

This instruction performs 8 x a-bit unsigned multiplication using
the low byte of the source register and the low byte of register
Rn, specified in the operand. The result is stored in the destina
tion register.

The source and destination registers are specified in advance
using a FROM, WITH, or TO instruction. When not specified, the
source and destination registers default to Ro.

CY z
*

B : Reset
ALT1 : Reset
ALT2 : Reset
S : Set when the result is negative, else reset.
Z : Set on zero result, else reset.

(MSB) (LSB)

0 0 1 1 1 1
UMULT Rn

1 0 0

I 1 I 0 1
0 n (OH-FH)

(3DH)

(8nH)

Machine Cycles:

Note:

Example:

ROM execution time 6 or 8 cycles

RAM execution time 6 or 8 cycles

Cache RAM execution time 2 or 3 cycles

The number of cycles depends on the CON FIG register setting.

Under the following conditions,

Sreg: R3, Dreg: Ro, R3= 364FH, Rs= B2CFH

the register Ro becomes 3FE1 H when

UMULT Rs

is executed.

2-9-122

SNESDEVELOPMENTMANUAL

2-9-123

INTRODUCTION TO DSP1

Chapter 1 Introduction to DSPI
Digital Signal Processor (DSP 1) is a 16-bit fixed point digital signal processor designed as a co
processor for the Super Nintendo Entertainment System (Super NES). It provides the Super NES
programmer with advanced, high speed, pseudo three-dimensional programming capabilities.
These functions are possible through the use of a command set held by the DSPI 's internal ROM.

1.1 SUPER NES CPU SUPPORT

DSP1 supports processing of the Super NES CPU through parallel operation. The
increased processing speed and advanced processing capability greatly improves ..
the realism of Super NES games.

1.2 PSEUDO 3-DIMENSIONAL GRAPHICS

Because numerous commands for 3-dimensional graphics are incorporated,
DSP1 is especially useful for 3-dimensional games, such as those involving flight
simulation.

1.3 COMPLEX MATH PROCESSING

General purpose commands for complex math calculation are also included within
the DSP1 ROM. Calculations can be executed much faster than with the Super
NES CPU. Therefore, DSP1 is useful in games which require high speed multipli
cation, division, and calculation of trigonometric functions.

1.4 SYSTEM BLOCK DIAGRAM

The system block diagram, on the following page, illustrates the means by which
the DSP1 is connected to the Super NES.

3-1-1

11
cO'
c ...,
CD

UJ
I
~

I
~

en
'< en
CD
3
OJ
0
0
7'

0
5)'

tf co ...,
N

D>
3
0
en
-u
~

SUPER NES

Super NES
V-RAM

APU

CPUIMemory

1
1

B Bus:
1
1
1
1
1
1

I A Bus:
---------------------------~---

GPK Connector - 62 Pin

~ - DSP-cAlf'fRIDGE -I

1
1
1
1
1
1

L ___ :

The DSP1 and Super NES CPU are connected by Bus A.
The Super NES CPU executes the LOAD/STORE commands for DSP Data I/O.

~
rn
~
n1 r-o
~
~
.....

~
~

~ r-

INTRODUCTION TO DSP1

1.5 DSP1 OPERATION

1.5.1 COMMAND EXECUTION

The DSP1 receives commands from the Super NES CPU and returns the
results of its computations.

,..-------, Command Parameters
Super NES Results of Com utation

CPU

Figure 3-1-2 Super NES CPU and DSP1 Communications

Command execution between the Super NES and DSP1 is demonstrated
below.

1) Command (Multiplication: 1 byte)

2) Parameter 1 (Multiplicand 16 bits)

3) Parameter 2 (Multiplier 16 bits)

Super NES
CPU

Figure 3-1-3 DSP 1 Command Execution

3- 1-3

Command reception
and interpretation

4) Computation

5) Computation Result (16 bits)

DSP

" cO·
c ..,
CD

(JJ
I
~

I

~

~
0
0..
CD
r\:)
0 -....
0 en
"'U

~
CD

"f 3
0

1. ~
~
~

"'0

Super NES Memory Map (20 Mode/DSP)
FF

Note 1: Use 8000H/COOOH as the read/write port for DSP1.
Note 2: The maximum ROM capacity is 8 MSits in Mode 20.

..,.
n~ en .. ~

0
III

...I. s: ~
~

,.....
m 0

...I. s: ~
0 ~

s:: :D -t

~ 0 -<
~ C s: ~ m » r-

I\)

~ -a
c :2 en Z
"tJ C)

DSPAREA
(SF)
3F

STATUS
Read Only

DATA
Read/Write

."
cO'
c
~
(1)

VJ
I

--L
I

01

~
0
a.
(1)

I\)
--L

---0
(j)
"U

~
(1)

"f 3
0

~ ~
~
Sl>

"'0

Super NES Memory Map (21 Mode/DSP)

FF

't < < < < I ~ > > > > I BOOOH

DSPAREA
(SF) (SO)
OF 00 I A-Pc~~5SS

STATUS
Read Only

DATA
Read/Write

I" ' A' "I6000H

Note 1: Use 6000H/7000H as the read/write port for DSP1 operations.

....
c"
N

s: o
c
m
I\)
.......
c en
"'C

~
~
o
CJ
c:
()

:::!
~
d

~

SNES DEVELOPMENT MANUAL

Chapter 2 Command Summary

COMMAND CLOCK PROCESSING
TYPE NAME FUNCTION CODE CYCLES TIME (Jlsec)

General Multiply 16-bit multiplication OOH 26 3.4
Calculation (decimal, interger)

Inverse Inverse calculation 10H 98 12.9
(floating point)

Triangle Trigonometric
calculation _(sin, cos)

04H 59 7.8

Vector Radius Vector size 08H 34 4.5
Calculation calculation

Range Vector size 18H 38 5.0
comparison

Distance Vector absolute 28H 156 20.5
value calculation

Coordinate Rotate 2-D coordinate OCH 65 8.6
Calculation rotation

Polar 3-D coordinate 1CH 147 19.3
rotation

Projection Parameter Projection parameter 02H 892 117.4
Calculation setting

Raster Raster data OAH 224+209~n-1l 29.5+27.5~n-1l
calculation 1AH 224+208 n-1 29.5+27.4 n-1

Project Object projection 06H 627 82.5
calculation

Target Coordinate OEH 228 30.0
calculation of a
selected point on
the screen

Attitude Attitude Set attitude 01H 164 21.6
Control 11 H 164 21.6

21H 164 21.6
Objective Convert from 810bal ODH 45 5.9

to object coor inates 1DH 45 5.9
2DH 45 5.9

Subjective Convert from object 03H 44 5.8
to global coordinates 13H 44 5.8

23H 44 5.8
Scalar Calculation of inner OBH 36 4.7

rcroduct with the 1BH 36 4.7
orward attitude and 2BH 36 4.7

a vector
New Angle Gyrate 3-D angle 14H 444 58.4
Calculation rotation

Table 3-2-1 DSP1 Command Summary

Note 1. The "n" in the processing speed and clock cycle columns indicates the number
of times a process is repeated.
- Raster data calculation: The number of rasters calculated.
- Data ROM read: Number of words in the ROM read.

Note 2. For commands with multiple codes, refer to the description of each command.

3-2-1

PARAMETER DATA TYPE

Chapter 3 Parameter Data Type

The conventions used in the table below are employed throughout this manual when re
ferring to parameters.

PARA- #
METER DESCRIPTION BITS DATA RANGE UNIT

A

T

18

I

21

CI

U

D

L

H

D2

L2

H2

M

C

Angle 8 -1t-+1t (-180°-+ 180°) 21t1216

Fixed Point Decimal 16 -1.0 - +0.999969· • • 2-15

Integer with decimal part (fixed point) 16 -128.0 - +127.996093·· 2-8

Integer 16 -32768 - +32767 1

Double integer 17 -65536 - +65534 2

Cyclic integer 16 1"- -32768-+32767, 1

Integer without a sign 16 0-65535 1

Double precision integer 32 -2147483648 - 1
+2147483647

Low digit of double precision integer 16 --- ---
High digit of double precision integer 16 --- ---
Double precision half integer 32 -1073741824 - 2-1

+1073741823

Low digit of double precision half integer 16 --- ---
High digit of double precision half integer 16 --- ---
Floating point coefficient 16 -1.0 - +0.999969· • • 1

Floating point exponent 16 -32768 - +32767 1

Table 3-3-1 Parameter Data Type

Note 1. The data transfer between the Super NES CPU and DSP1 is carried out
in 16 bits regardless of the number of bits in each parameter selection
shown in the above table.

Note 2. Though the resolution of the double precision semi-integer (D2) is 2-1, it is
actually handled as an integer because the lowest bit is always used as
O.

Note 3. The exponent of a floating point number (C) can be stored in the range of
8002H to 7FFFH (-32766 to 32767).

3-3-1

SNES DEVELOPMENT MANUAL

Chapter 4 Use oj DSPI

4.1 DSP1 DR REGISTER

DSP1 processes Super NES CPU commands and parameters using an internal
DR register that is mapped in the Super NES CPU "A" bus.

Commands and parameters are sent from the Super NES CPU to DSP1. Specifi
cally, data is written to the memory-mapped DR register using the STORE com
mand. The Super NES CPU -and DSP1 do not perform handshaking operations.
The Super NES CPU waits while DSP1 processes data, before sending the next
data.

Super NES
Memory Map

0000 DF 00

6000 t---::=-=--=-----,-----1
DR Register

7000 ~=-=-A-=c_ce~s~s_--1
SR Register

Access
7FFF--------1

DSP1

Figure 3-4-1 Super NES/DSP1 Memory Mapping (Mode 21)

DSP1 decodes commands, processes them according to the assigned parame
ters, and writes the results to the DR register. The Super NES CPU waits, while
DSP1 processes the data, then reads the DR register using the LOAD command
to obtain the results.

The DR register has 2 input/output modes, 8 bit and 16 bit. The DSP1 receives
each command in the 8 bit mode. Once the command is received, the DR register
is changed to the 16 bit mode. All input/output data is transferred in the 16 bit
mode. The DR register mode is controlled by the DSP1 Status register.

3-4-1

USE OF DSP1

4.2 DSP1 STATUS REGISTER

The status register is a 16-bit register which holds the status bits needed by the
OSP1 to transfer data to and from external devices. The upper 8 bits can be read
from an external device through pins 00 through 07 of OSP1. Only bit 15 is used
by the Super NES. This bit is referred to as "ROM"

015 014 013 012 011 010 09 08

I ROMVVVVVVVI
07 06 05 04 03 02 01 00

VVVVVVVVI
Figure 3-4-2 OSP1 Status Register Configuration

4.3 RQM

This bit indicates that the OSP1 is requesting data read from the Super NES CPU.
The bit is "0" when the OSP1 is busy and "1" when it is ready to read or write.

4.4 DMA TRANSFER

Although OSP1 is capable of OMA data transfer, it is not supported by the Super
NES system due to current hardware configuration.

3-4-2

SNES DEVELOPMENT MANUAL

4.5 OPERATION SUMMARY

The following figure shows the relationship and basic operations of the Super
NES CPU and DSP1.

(Super NES CPU Operation~

:- -N~~~~I-Pr~g~~~ -Pr~~e~si~g - : L ______________________ _

Issue Command
(Write Data to DSP1)

1
1
1
1
1
1
1
1
1
1
1

--'------

Re[pe a_t _"'"""----_s_e_t _p-,a_ra_m_et_e_rs_~_--, __ :1 _____ _

_ (Write Data to DSP1)

Wait

(Wait for RQM Bit to Set)

Releat
Read Processing Results

(Read DSP1 Data)
~-----~----------~

----------- ------------,
: Normal Program Processing I

------------------ ______ 1

1
1

1
1
1
1

- - -1- - - - --

C ____ D_S_P_1_0_p_er_a_tio_n_s ___)

• ~ Command Input Wait I
DR Write - - - - - - --~

,II

~ Command Decode I
-1

I Parameter Input Wait I
DR Write
- - - - - - --~

\11

I Command Execution J

~ Send Processing Results to DR I
DR Read
-------~

Figure 3-4-3 DSP1 Operations Flow Diagram

3-4-3

"T1
cO'
c ..,
CD

U)
I

~
I

~

(J)
c

"'0
CD ..,
z
m
(J)

0
""0
c
'""'-

VJ 0
1- (J)

1- ""0
....&.

0
"'0

CD ..,
Q>
.-+ o·
::J
n>

-i
3'
s·
ec

Super NES
CPU Clock
(2.68MHz)

Super NES
CPU Inst.

Super NES
CPU Address

Super NES
CPU Data

DSP1 WR
Signal
(8 bits x 2 times)

DSP1
Instruction

DSP1 Clock
(7.6 MHz)

Super NES CPU/DSP1 Operational Timing

£DSP Address at Super NES CPU

STA DSPOUT X 'C...

PC X P-C+1---X---P-C~2-X--DSPOlJT-XoSPOUT+1X PC+3 X'--__
Contents of C Register

Instruction Word (1) Instruction Word (2 Instruction Word (3
($80) (OSPOUT Low) (OSPOUT High)

\J-v
Instruction Instruction

DSP1 Reads C Register Contents

~
I'll
o
"'ll

~
]

SNES DEVELOPMENT MANUAL

ChapterS Description of DSPI Commands

5.1 GENERAL CALCULATION

5.1.1 16-BIT MULTIPLICATION (DECIMAL, INTEGER)

Name:

Code:

Multiply

OOH*3

Parameters: Input k[T/I]
I[T/I]

Multiplicand
Multiplier

Function:

Equation 5-1 :

Output M[T/H2] Product (rounded fraction ~ 15
bits)

This command determines the product, M, of decimal K
and I. The command can also determine the product of
integers [I], wherein the result of the calculation is a dou
ble precision half integer (H2).

kxl = M

Number of Process Cycles: Input 1. Command Input 6
2. k input 12
3. I input 4

Output 1. M output 4

*Notes: 1. Parameters are input/output via the DR register.

2. Parameters are input/output in the order shown above. The
number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

3. OOH is a hexadecimal code.

Example: This is a general command used in all types of calculations.

3-5-1

DESCRIPTION OF DSP1 COMMANDS

5.1.2 INVERSE CALCULATION (FLOATING POINT)

Name:

Code:

Parameters:

Function:

Equation 5-2:

Inverse

10H

Input: a[M] Coefficient
b[C] Exponent (8002-7FFFH)

Output: A[M] Coefficient
8[C] Exponent (8002-7FFFH)

This command determines the inverse of a floating point
decimal number.

Number of Process Cycles: Input 1. Command Input 6
2. a input 13
3. b input 73

Output 1. A output 2

2.8 output 4

*Notes: 1. Parameters are input/output via the DR register.

2. Parameters are input/output in the order shown above. The
number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

Example: This is a general command used in all types of calculations.

3-5-2

SNES DEVELOPMENT MANUAL

5.1.3 TRIGONOMETRIC CALCULATION

Name:

Code:

Triangle

04H

Parameters: Input: S[A] Angle

Function:

r[T/I] Radius

Output: S[T/I] sin
C[T/I] cos

This command determines the product of the sin of an
gie S and radius r, and the product of the cosine and ra
dius r. When the radius is an integer [I], the results are
also an integer.

Equation 5-3:

C = r (cosS) S = r(sinS)

y

S --------

r

S --------------11.- X o C
Figure 3-5-1 Trigonometric Calculation

Number of Process Cycles: Input 1. Command Input 6
2. S input 12
3. r input 34

Output 1. S output 3
2. C output 4

*Notes: 1. Parameters are input/output via the DR registers.

2. Parameters are input/output in the order shown above. The
number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

Example: [sinS, cosS calculation]
Set r=1 to calculate sinS and cosS.

[Vector component calculation]
Determines the X and Y components for a two-dimensional
vector whose size and direction are known.

This is a general command which can be used in other types
of calculations.

3-5-3

DESCRIPTION OF DSP1 COMMANDS

5.2 VECTOR CALCULATION

5.2.1 VECTOR SIZE

Name:

Code:

Parameters:

Function:

Equation 5-4:

Radius

08H

Input:

Output:

x[l]
y[l]
z[l]

LL[L2]
LH[H2]

X component of the vector
Y component of the vector
Z component of the vector

Vector size squared (lower)
Vector size squared (upper)

This command determines vector size (square of the
absolute value).

~i~ -----;--; , ,
" ,'1

~------" I
I _,..- I I

I "Lr I I
I I I

I 0 I IY Y
I I ~
I I ~~
I ",,," x-------

x
Figure 3-5-2 Vector Calculation

The absolute value of the vector R = J[is determined
by the Distance command.

Number of Process Cycles: Input 1. Command Input 6
2. x input 14
3. Y input 4
4. z input 4

Output 1 . LL output 2
2. LH output 4

*Notes: 1. Parameters are input/output via the DR registers.
2. Parameters are input/output in the order shown above. The

number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

3-5-4

SNES DEVELOPMENT MANUAL

Example: [Distance between two points]
This command is useful for calculating the distance between
two points. The command calculates the square of distance
between two points, and may be used for calculating compar
ative data. One point of the vector is assumed to be X=O, Y=O
and Z=O.

3-5-5

DESCRIPTION OF DSP1 COMMANDS

5.2.2 VECTOR SIZE COMPARISON

Name:

Code:

Parameters:

Range

18H

Input: x[T/I]
y[T/I]
z[T/I]
r[T/I]

X component of the vector

Function:

Output: D[T/H2]

Y component of the vector
Z component of the vector
Range to be compared against
the vector size (sphere radius)

Difference between the vector
size and the specified range.

This command subtracts the square of the specified
range from the square of the vector size. This command
compares the vector size and the distance from a partic
ular point, and so may be used to determine if a point is
within the sphere. The parameters can be either decimal
or integer.

Equation 5-5:

x2 + y2 + Z2 - r2 = 0

X
Figure 3-5-3 Vector Size Comparison

Number of Process Cycles: Input

Output

Z

I
I

:y
it---~Y

,

1 . Command Input 6
2. x input 12
3. Y input 4
4. z input 4
5. r input 8

1.0 output 4

*Notes: 1. Parameters are input/output via the DR registers.
2. Parameters are input/output in the order shown above. The

number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

Example: [Detects a collision in three-dimension]
This command determines if an object is within a certain
range of a point. It can be used to detect three-dimensional
collisions.

3-5-6

SNES DEVELOPMENT MANUAL

5.2.3 VECTOR ABSOLUTE VALUE CALCULATION

Name:

Code:

Parameters:

Distance

28H

Input: x[lfT]
y[lfT]
z[lfT]

X component of the vector
Y component of the vector
Z component of the vector

Output: R[lfT] Vector size

Function: This command determines vector size (absolute value).
The parameters can be either decimal or integer.

Equation 5-6: Jx2 + y2 + z2 = R

Z

x

Figure 3-5-4 Vector Absolute Value Calculation

Number of Process Cycles: Input 1. Command Input 6
2. x input 15
3. Y input 4
4. z input 127

Output 1. R output 4

*Notes: 1. Parameters are input/output via the DR registers.

2. Parameters are input/output in the order shown above. The
number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

Example: [Distance between two points]
This commands calculates the distance between two 3-D
points on the coordinate. In contrast to the Radius command.

3-5-7

DESCRIPTION OF DSP1 COMMANDS

5.3 COORDINATE CALCULATION

5.3.1 TWO-DIMENSIONAL COORDINATE ROTATION

Name:

Code:

Parameters:

Function:

Equation 5-7:

Rotate

OCH

Input: Angle of rotation about the Z
axis (counterclockwise)
X coordinate before rotation
V coordinate before rotation

Output: x2[1] X coordinate after rotation
Y2[1] V coordinate after rotation

This command determines the (X,V) coordinates after
rotating (x,y) counterclockwise for e.

V

y ------

~ __ ...L_.. __ =___---1 .. X
o x2 x1

Figure 3-5-5 Two-Dimensional Coordinate Rotation

Number of Process Cycles: Input

Output

1. Command Input 6
2. e input 12
3. x1 input 3
4. Y1 input 37

1. X2 output
2. Y2 output

2
4

*Notes: 1. Parameters are input/output via the DR registers.
2. Parameters are input/output in the order shown above. The

number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

Example: [Coordinate calculation for rotating an object on a surface]
This command calculates the coordinates of an object after it
is rotated on a surface.

3-5-8

SNES DEVELOPMENT MANUAL

5.3.2 THREE-DIMENSIONAL COORDINATE ROTATION

Name:

Code:

Parameters

Function:

Equation 5-8:

Polar

1CH

Input: 8[A] Angle of rotation about the Z
axis (positive from the Y axis to
the X axis)

ct> [A] Angle of rotation about the X
axis (positive from the Z axis to
the Y axis)

<p[A] Angle of rotation about the Y
axis (positive from the X axis to
the Z axis)

x[l] X coordinate before rotation
y[l] Y coordinate before rotation
z[l] Z coordinate before rotation

Output: X[I] X coordinate after rotation
Y[I] Y coordinate after rotation
Z[I] Z coordinate after rotation

This command determines the (X, Y ,Z) coordinates
when rotating (x,y,z) three-dimensionally. Rotation is
performed in the order of ct> about theY axis, <p about the
X axis, and 8 about the Z axis.

(x, y, z) [CO?~ ~ Si~~] r~ C;S$ -s~n$l [~~~: ~~:: ~l = (X, Y, Z)

-SIn~ 0 cosq> l~ sln$ COs;J 0 o:J
Z Z

------~O~~~---+~~Y ---+---::::.-to:::...-----.~Y

X X

Rotation on V axis Rotation on X axis

3-5-9

DESCRIPTION OF DSP1 COMMANDS

z

x

Rotation on Z axis

Note: To be compatible with the projection and attitude
control commands, the X axis shall be east-west
(east = +), the Y axis shall be north-south (north =
+), and the Z axis shall be up and down (up = +).

Number of Process Cycles: Input 1. Command Input 6
2. e input 13
3. ~ input 3
4.~input 2
5. x input 2
6. Y input 2
7.zinput 107

Output 1. X output 6
2. Youtput 2
3. Z output 4

*Notes: 1. Parameters are input/output via the DR registers.

2. Parameters are input/output in the order shown above. The
number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

Example: [Coordinate calculation for three-dimensional rotation of an
object]

This command calculates the coordinates of an object after
three-dimensional rotation. (Refer to the diagram on the fol
lowing page.)

3-5-10

SNES DEVELOPMENT MANUAL

X

z

Position of the object
before rotation

y

z

z

X

X

Figure 3-5-6 Examples of Three-Dimensional Rotation

3-5-11

,/P---~y

Rotation on X
axis

y

Rotation on Z
axis

DESCRIPTION OF DSP1 COMMANDS

5.4 PROJECTION CALCULATION

5.4.1 PROJECTION PARAMETER SETTING

Name:

Code:

Parameters:

Function:

Parameter

02H

Input:

Output: Vof[l]

Vva[l]

X coordinate of base point (glo
bal coordinates)
Y coordinate of base point (glo
bal coordinates)
Z coordinate of base point (glo
bal coordinates)
Distance between base point
and viewpoint (Sets screen
sprite ratio.)
Distance between viewpoint and
screen (The effect of screen an
gie considered; the screen hori-
zontal distance is 256)
Azimuth angle of view line with
respect to global coordinates.
(East is 0° and positive toward
the north)
Zenith angle of view line with re
spect to global coordinates. (Ze
nith is 0°, 0°-180°).

Raster number of imaginary
center
Raster number representing
horizontal line.
X coordinate of the point pro
jected on the center of the
screen (ground coordinates)
Y coordinate of the point pro
jected on the center of the
screen (ground coordinates)

This command sets various projection parameters and
calculates the basic data used in subsequent process
es. The command places the viewer behind a fixed point
such as an airplane. If the distance between the fixed
point and the view point is set to 0, then the viewer sees
the display from the perspective of the airplane.

3-5-12

SNESDEVELOPMENTMANUAL

Viewpoint

Zenith Angle
AZ5

Z (Sky)

E-=~------------~------~----

~~-----II. X (East)

Assignment of Projection Parameter

Figure 3-5-7 Assignment of Projection Parameter

Figure 3-5-8

Vva (number of the raster used to display a horizontal
line) indicates the border between background environ
ments such as sky or cloud and a horizontal plane such
as earth or sea. For raster numbers larger than Vva (rep
resenting the area below the horizon line), a horizontal
plane is displayed on the screen, but the matrix ele
ments for each raster are calculated individually using
the RASTER command.

Relation between sight and projected plane (side view)

Relationship of Sight and Projected Plane

3-5-13

DESCRIPTION OF DSP1 COMMANDS

Cx and Cy (global coordinates for the point projected on
the center of the screen) are the center coordinates
used for rotation, and must be specified to the PPU.

Number of Process Cycles: Input 1. Command Input 6
2. Fx input 11
3. Fy input 2
4. Fz input 2
5. Lfe input 3
6. Les input 3
7. Aas input 4
8. Azs input 839

Output 1. Vof 2
2. Vva 10
3.Cx 5
4.Cy 5

Example: [Parameter setting necessary for projection]
Pilot Wings displays the view seen from the view point direct
ly behind an airplane which is at the fixed point. When the
distance between the screen and view point is set to 256
(when the horizontal width of the screen is 256), the horizon
tal screen angle is 50°.

3-5-14

SNES DEVELOPMENT MANUAL

5.4.2 RASTER DATA CALCULATION

Name:

Code:

Parameters:

Function:

Raster

OAH (To output result of calculation via DMA.)
1 AH (When result of calculation is not output via DMA.)

Input: V s[l] Raster number where projection

Output:

Bn[18]

display begins.

Linear transformation matrix el
ement A for each raster
Linear transformation matrix el
ement B for each raster
Linear transformation matrix el
ement C for each raster
Linear transformation matrix el
ement D for each raster

This command calculates the linear transformation ma
trix elements (A, B, C, D) for each raster based on the
various projection parameters specified with the Param
eter command in internal RAM. Effects of Perspective
can be achieved by specifying the matrix elements for
each raster to the PPU to display distant objects (small)
and near objects (large). Results of these calculations
can be output in one of two modes. Normally, the results
are read from the Super NES CPU using software. The
results are output successively in the order of A=>B=>
C=>D=>A=>B··· until the command is completed. The
command is ended by writing 8000H to the DR instead
of reading element D.

3-5-15

Viewpoint
E

Z (Sky)

L

DESCRIPTION OF DSP1 COMMANDS

X (East)

Projected position on the ground

Figure 3-5-9 Calculation of Raster Data

Figure 3-5-10 BG Screen and Displayed Area

Number of Process Cycles: Input

Output

*Notes: 1. Until An+1 is output.

1. Command Input 6
2. Vs input 211

1. An
2.Bn
3.Cn
4.Dn
5.Dn

3
3
3
200*1
7*2

2. Until the command is interrupted and the next command can
be selected.

3-5-16

SNES DEVELOPMENT MANUAL

Example: [Calculation of linear transformation matrix elements for pro
jection]

This command is used frequently for projection of the ground
objects (airplane runway, sky diving target point, etc.) in Pilot
Wings.

3-5-17

DESCRIPTION OF DSP1 COMMANDS

5.4.3 OBJECT PROJECTION CALCULATION

Name:

Code:

Parameters:

Function:

Project

06H

Input:

Output:

x[l]

y[l]

z[l]

H[I]

V[I]

M[I]

X coordinate of the object (glo
bal coordinates)
Y coordinate of the object (glo
bal coordinates)
Z coordinate of the object (glo
bal coordinates)

H coordinate of the object pro
jected on the screen (screen co
ordinates, right is positive).
V coordinate of the object pro
jected on the screen (screen co
ordinates, down is positive).
Enlargement ratio for projected
object.

This command calculates the location and size of the
projection of an object on the screen based on various
projection parameters specified with the Parameter
command in internal RAM. The center of the screen is
the origin of the screen coordinates (0,0).

Z (Sky)

° r-----------------------~~~~
X (East)

-Y (South)

Figure 3-5-11 Calculation of Projected Position of Object

3-5-18

SNES DEVELOPMENT MANUAL

-y (South)

Number of Process Cycles: Input 1 . Command Input 6
2. x input 12
3. Y input 4
4. z input 596

Output 1. H output 3
2. V output 2

3. M output 4*1

*Notes: 1. Until the next command can be selected.

Example: [Calculation of the projected location (on the screen) of a
floating object]

Z (Sky)

o

This command is used in Pilot Wings to project a ring consist
ing of floating balls. The location and size of the balls project
ed on the screen are calculated based on the balls' global
coordinates. By changing the location and size of the balls'
sprite, three-dimensional display of the ring projected on the
screen can be achieved.

X (East)

Viewpoint

Figure 3-5-12 Projection Image of Object

3-5-19

DESCRIPTION OF DSP1 COMMANDS

5.4.4 COORDINATE CALCULATION OF A SELECTED POINT ON THE
SCREEN

Name:

Code:

Parameters:

Function:

Z (Sky)

Y (North)

X (East)
o

Target

OEH
Input: h[l] H coordinate of selected point

on the screen (screen coordi
nates, right is positive)

v[l] V coordinate of selected point
on the screen (screen coordi
nates, down is positive)

Note: The origin coordinates of the screen designate the
center of the screen.

Output: X[I] X coordinate of selected point
(global coordinates, east is posi
tive).

Y[I] Y coordinate of selected point
(global coordinates, south is
positive).

This command calculates the coordinates of a selected
"ground" point on the screen. The command calculates
the global coordinates (X, Y) (the Z coordinate is zero) of
the point projected on a point selected by a cursor or tar
get mark based on the screen coordinates (H,V) of the
selected point.

Viewpoint

Figure 3-5-13 Calculation of Coordinates for the Indicated Point on the Screen

3-5-20

SNES DEVELOPMENT MANUAL

Number of Process Cycles: Input 1. Command Input 6

2. h input
3. v input

Output 1. X output
2. Youtput

11
203

4
4*1

*Notes: 1. Until the next command can be selected.

Example: [Calculation of the target on the ground when attacking from
the sky]

Viewpoint

This command is used in Pilot Wings when the helicopter at
tacks a target on the ground using a missile scope. When the
missile launch button is pressed, the location of the point on
the ground which is targeted in the scope is calculated and a
missile is launched on that vector. The trajectory of the mis
sile is a straight line toward that point and is not affected by
the velocity of the helicopter at the time of the launch.

Fixed Point
Aim

Virtual
Screen

"
patho~
Missile

oint and Position Indicated on Screen (Side

3-5-21

DESCRIPTION OF DSP1 COMMANDS

5.5 ATTITUDE CONTROL

5.5.1 SET ATTITUDE

Name:

Code:

Parameters:

Function:

Equation 5-9:

Attitude

01 H (To select attitude matrix A)
11 H (To select attitude matrix B)
21 H (To select attitude matrix C)

Input: m[T] Constant
8[A] Rotational angle about the Z

axis (from Y axis to X axis is +)
<I> [A] Rotational angle about the X

axis (from Z axis to Y axis is +)
<p[A] Rotational angle about the Y

axis (from X axis to Z axis is +)

This command calculates a matrix which represents a
three-dimensional rotation (attitude change). The order
of rotation is <I> about the Y axis (north-south), <p about
the X axis (east-west), and 8 about the Z axis (up
down). By applying the attitude matrix to the object coor
dinates (FLU coordinates), the global coordinates (XYZ
coordinates) can be obtained (the SUBJECTIVE com
mand). By applying the inverse of the attitude matrix
(transpose matrix) to the global coordinates, the object
coordinates can be calculated (the OBJECTIVE com
mand).

Calculates attitude matrix A when the code is 01 H
(M=A)
Calculates attitude matrix B when the code is 11 H
(M=B)
Calculates attitude matrix C when the code is 21 H
(M=C)

3-5-22

SNES DEVELOPMENT MANUAL

Z (Sky)

Direction of
Rotation

U (Up)

.-J---+-:--t~y (N orth)

t v \VPI L (Left)

F (Forward) r X (East)

Global Coordinates Object Coordinates Before Rotation
(X, V, Z Axes) (F, L, U Axes)

Figure 3-5-15 Attitude Computation

F + U

~: L
, Y ,

~

Rotation on V Axis Object Coordinates After Rotation
(F, L, U Axes)

Figure 3-5-16 Object Coordinate Rotated on Y Axis

F

x
Rotation on·X Axis Object Coordinates After Rotation

(F, L, U Axes)

Figure 3-5-17 Object Coordinate Rotated on X Axis

Rotation on Z Axis

,
""

L
Object Coordinates After Rotation

(F, L, U Axes)

Figure 3-5-18 Object Coordinate Rotated on Z Axis

3-5-23

DESCRIPTION OF DSP1 COMMANDS

Number of Process Cycles: Input 1 . Command Input
2. m input
3. e input
4. <I> input
5. <p input

*Notes: 1. Until the next command can be selected.

6
13
4
4
137*1

Example: [Calculation of attitude matrix for global-object coordinate
conversion]

This command is used to calculate necessary attitude matri
ces using 3 commands for attitude control. When the attitude
changes, this command must be used to renew attitude con
trol matrices.

3-5-24

SNES DEVELOPMENT MANUAL

5.5.2 CONVERT FROM GLOBAL TO OBJECT COORDINATES

Name:

Code:

Parameters:

Function:

Equation 5-10:

Objective

ODH (To select attitude matrix A)
1 DH (To select attitude matrix B)
2DH (To select attitude matrix C)

Input: x[l] X coordinate of object (global
coordinates, east)

y[l] Y coordinate of object (global
coordinates, north)

z[l] Z coordinate of object (global
coordinates, up)

Output: F[21] F coordinate of object (object
coordinates, forward)

L[21] L coordinate of object (object
coordinates, left)

U[21] U coordinate of object (object
coordinates, up)

Attitude matrices (A,B,C) represent the three-dimen
sional relationship between rotation angles of the object.
coordinates (the FLU axes) and global axes (the XYZ
axes). The global coordinates are obtained by multiply
ing the object coordinates with attitude matrices (i.e., by
rotating three-dimensionally). Inversely, the object coor
dinates are obtained by multiplying the global coordi
nates with inverse of the attitude matrices (Le., by
rotating in the opposite direction and order).

Calculates the product with inverse of the matrix A when
the code is ODH (M-1=A-1).

Calculates the product with inverse of the matrix B when
the code is 1 DH (M-1=B-1).

Calculates the product with inverse of the matrix C when
the code is 2DH (M-1 =C-1).

1 M-I 2 (x, y, z) = (F,L,U)

3-5-25

DESCRIPTION OF DSP1 COMMANDS

U (Up)

Figure 3-5-19 Conversion of Global to Objective Coordinates

Number of Process Cycles: Input 1 . Command Input 6
2. x input 14
3. Y input 4
4.zinput 7

Output 1. F output 5
2. L output 5
3. U output 4

*Notes: 1. Parameters are input/output via the DR registers.

2. Parameters are input/output in the order shown above. The
number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

Example: [Conversion from the global coordinates to object coordi
nates]

In Pilot Wings, the conversion of objective coordinates to glo
bal coordinates for the aircraft is calculated using wind ef
fects. Using these calculations, the course and speed of the
aircraft may be altered by wind direction and speed.

3-5-26

SNES DEVELOPMENT MANUAL

5.5.3 CONVERSION FROM OBJECT TO GLOBAL COORDINATES

Name:

Code:

Parameters:

Function:

Subjective

03H (To select attitude matrix A)
13H (To select attitude matrix B)
23H (To select attitude matrix C)

Input: F[21] F coordinate of object (object
coordinates, forward)

L[21] L coordinate of object (object
coordinates, left)

U[21] U coordinate of object (object
coordinates, up)

Output: X[I] X coordinate of object (global
coordinates, east)

Y[I] Y coordinate of object (global
coordinates, north)

Z[I] Z coordinate of object (global
coordinates, up)

Attitude matrices (A,B,C) represent the three-dimen
sional relationship between rotation angles of the object
coordinates (FLU axes) and global axes (XYZ axes).
The global coordinates are obtained by multiplying the
object coordinates with attitude matrices (Le., by rotating
three-dimensionally) .

Calculates product with attitude matrix A when the code
is 03H (M=A)
Calculates product with attitude matrix B when the code
is 13H (M=B)
Calculates product with attitude matrix C when the code
is 23H (M=C)

Equation 5-11 :
1
2(F,L,U)M = (X,Y,Z)

3-5-27

DESCRIPTION OF DSP1 COMMANDS

Z (Sky)

,,')' ,

U (Up-side) /""",/ "'" I", L (Left)
" """ z,' '

", ,,' ,'~I
u...,: " ,,," I

" " ",>~, " " :.",: ", ','

" """" "."""Y· ',," x,' .

~
Y (North)

, I "
" I,,'

, I "

X (East) ',I ,,"
'·"t
, F (Front)

Figure 3-5-20 Conversion of Object to Global Coordinates

Number of Process Cycles: Input 1. Command Input 6
2. Finput 13
3. L input 4
4. Uinput 7

Output 1. X output 5
2. Youtput 5
3. Z output 4

*Notes: 1. Parameters are input/output via the DR registers.

2. Parameters are input/output in the order shown above. The
number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

Example: [Calculation of the global coordinates after change in the ob
ject's attitude]

In Pilot Wings, the object coordinates of the ring of balls re
main the same unless the size of the balls or the shape or
size of the ring is changed because there is one object coor
dinate system dedicated for the ring. When the direction (atti
tude) of the ring is changed, the ATTITUDE command is
used to renew the attitude matrices. The ring with the newat
titude can be displayed by calculating the global coordinaies
using the new attitude matrices and calculating the location of
balls' projection using the PROJECT command. The same
process takes place when the object coordinates change
without a change in attitude or when both attitude and object
coordinates change.

3-5-28

SNES DEVELOPMENT MANUAL

5.5.4 CALCULATION OF INNER PRODUCT WITH FORWARD ATTITIDE
AND A VECTOR

Name:

Code:

Parameters:

Function:

Scalar

OBH (To select attitude matrix A)
1 BH (To select attitude matrix B)
2BH (To select attitude matrix C)

Input: x[l] X component of vector.
y[l] V component of vector.
z[l] Z component of vector.

Output: S[I] Inner product

This command selects an attitude matrix based on the
code. It calculates the inner product of a vector and the
first row of the selected matrix.

When the code is OBH, S = x • Atx + Y • Aty + z • Atz
When the code is 1 BH, S = x • Btx + Y • Bty + z • Btz
When the code is 2BH, S = x • Ctx + Y • Cty + z • Ctz

Normal Vector
of Plane

Figure 3-5-21 Calculation of Inner Product with Forward Attitude

Equation 5-12:

Note: As shown below, the first row of the attitude matrix
represents global coordinates of a unity vector (1,0,0) in
the forward direction in the object coordinate system.

[

MfX Mfy MfZ]
S = (X, V, Z) (1,0,0) Mix Mly Mlz = (MfxMfyMfz)

Mux Muy Muz

M is equal to A, B, or C; depending upon selected code.

3-5-29

DESCRIPTION OF DSP1 COMMANDS

Number of Process Cycles: Input 1. Command Input 6
2. x input 15
3. Y input 4
4. z input 7

Output 1. S output 4

*Notes: 1. Parameters are input/output via the DR registers.

2. Parameters are input/output in the order shown above. The
number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

Example: [Detection of three-dimensional collision]

Vector passes through
the plane and ring. ---.. ---..

a • b = 0

Vector passes through
the inside of ring.

I~I <r

This command is used in Pilot Wings to see if the airplane
flew through the ring of balls. The sign of the inner product of
the forward vector of an object and the vector connecting the
object and the airplane changes when the airplane crosses
the plane containing the ring (the inner product is zero when
the airplane is on the plane). When the sign change occurs,
the distance from the center of the ring to the airplane and
the radius of the ring can be compared with the RANGE com
mand to see if the airplane was able to fly through the ring.

r! r.
---..
a

---..
b

---.. ---..
a • b > 0

---.. ---..
a • b = 0

. ---.. ---..
a • b < 0

Figure 3-5-22 Position of Aircraft and Vector Code

3-5-30

SNES DEVELOPMENT MANUAL

5.6 NEW ANGLE CALCULATION

5.6.1 THREE-DIMENSIONAL ANGLE ROTATION

Name:

Code:

Parameters:

Function:

Equation 5-13:

Gyrate

14H

Input: 9j[A] Angle of rotation about the Z
axis (+ from the V axis to the X
axis)

<l>j[A] Angle of rotation about the X
axis (+ from the Z axis to the V
axis)

<pj[A] Angle of rotation about the V
axis (+ from the X axis to the Z
axis)

~[A] U axis displacement angle. (+
from the L axis to the F axis)

d<l>[A] F axis displacement angle. (+
from the U axis to the L axis)

d<p[A] L axis displacement angle. (+
from the F axis to the U axis)

Output: 90 [A] Rotational angle about the Z
axis.

<l>o[A] Rotational angle about the X
axis.

<Po [A] Rotational angle about the V
axis.

Note: F, L, U axes represent the X, V, Z axes when ro
tated <I> j, <Pi, 9i only.

This command determines the attitude angles (90 , <I> 0'

<Po) of the body coordinates after the body with the atti
tude angle (9j, <I> j, <pj) with respect to the global coordi
nates are rotated by the minor displacement (~, d<l>,
d<p). The body axes are rotated about the XVZ axes by
(9j, <I> j, <Pi) to obtain the FLU axes. The FLU axes are
then rotated by (~, d<l>, d<p). This command calculates
the angles of the new FLU axes with respect to the XVZ
axes. The order of rotation is V axis, X axis, and Z axis
(L, F, and U axis).

9j + sec<l>j (d9cos<pj - d<l>sin<pj) = 9
0

<l>j+ (d9sin<pj+d<l>cos<pj) = <1>0

<pj-tan<l>j(d9cos<pj+d<l>sin<pj) +d<p = <Po

3-5-31

X

Z

~---~V

Global Coordinates
(X, V, Z Axes)

DESCRIPTION OF DSP1 COMMANDS

U

Rotate 8j, <I> j, <Pi F
to X, V, Z Axis

,
Rotate 80 , <I> 0' <Po
to X, V, Z Axis

L

Objective Coordinates
(F, L, U Axes)

F

I Rotate d8, d<l>,
d<p to F, L,U Axis

~-------
F' ~ , , , , , ,

, L'
L

Objective Coordinate Result of
Attitude Change
(F', L', U' Axes)

Figure 3-5-23 Calculation of Rotation Angle After Attitude Change

3-5-32

SNES DEVELOPMENT MANUAL

Number of Process Cycles: Input 1. Command Input 6
2. 8i input 14
3. <Pi input 2
4. <Pi input 2
5. de input 2
6.d<t> input 2
7.d<pinput 406

Output 1 . 80 output 2
2. <t> 0 output 4
3. <Po output 4

*Notes: 1. Parameters are input/output via the DR registers.

2. Parameters are input/output in the order shown above. The
number of cycles is the period until the next parameter can
be selected or the results of the calculation can be read.

Example: [Calculation for object attitude (directions) change]

This command is used to calculate the attitude angles of an
object that is steadily moving. The command determines the
attitude angles with respect to the globat coordinates by
specifying the angles of change to the current attitude angles.
The command may be used continuously to determine
changing attitude angles.

3-5-33

MA TH FUNCTIONS AND EQUASIONS

Chapter 6 Math Functions and Equations
The following is a summary of the mathematical functions and equations used in this
manual.

6.1 MULTIPLY

kxl = M

6.2 INVERSE

1 -- = Ax2B
ax2b

6.3 TRIANGLE

r (Cose) = C
r (sine) = S

6.4 RADIUS
x2 + y2 + Z2 = L

6.5 RANGE
x2 + y2 + Z2 - r2 = 0

6.6 DISTANCE

Jx2 + y2 + z2 = R

6.7 GYRATE

ej + sec<Pj (decos<pj - d<psin<pj) = eo

<Pj + (desin<pj + d<pcos<pj) = <Po

<pj-tan<pj (decos<pj +d<psin<pj) +d<p = <Po

6.8 ROTATE

(x, y) [C~S<I> -Sin<l>] = (X, Y)
Sln<p cos<p

3-6-1

SNES DEVELOPMENT MANUAL

6.9 POLAR

6.10 ATTITUDE

[

cos<p 0 -sin <Pj [1 0 0] [COSS sin S o~
m ,0 1 0 0 c~s<j> sin<\> -sinS cosS 0 = M

Sln<p 0 cos<p 0 -SIn<j> cos<j> 0 0 1

6.11 OBJECTIVE

1 2 (x, y, z) M-I = (F, L, U)

6.12 SUBJECTIVE
1 2 (f, I, u) M = (X, Y, Z)

6.13 SCALAR

3-6-2

INTRODUCTION

Chapter 1. The Super NES Super Scope System

1.1 INTRODUCTION TO THE SUPER NES SUPER SCOPE SYSTEM

The Super NES Super Scope is a light sensitive system for use with the Super
NES. The Super NES Super Scope was developed to give the Super NES added
value and eliminate all of the problems of heretofore existing devices. Features of
the Super NES Super Scope are as follows. It is composed of two units; the Super
NES Super Scope (light sensitive device) and a receiver/transmitter (Super NES
Super Scope-RX).

1.1.1 TARGETING
The Super NES Super Scope detects where the device is aimed, unlike
the existing Nintendo Entertainment System device (Zapper), which de
tects targets. The wireless system utilizes an infra-red beam.

Super NES Super Scope-RX
(Receiver)

Figure 4-1-1 Signal Flow

Super NES Super Scope

The Super NES Super Scope utilizes the external latch function of the
Super NES horizontal/vertical counters. The Super NES Super Scope de
tects CRT scanner timing with a light receiver, and transmits the timing
pulse to the Super N ES external latch pin to detect the aim location on
the CRT. (Same principle as a light pen.)
When the Super NES Super Scope is triggered, the Super NES Super
Scope sends a beam of infra-red light to the Super NES and transmits
raster timing pulses for a few frames.
When the CPU in the Super NES Super Scope RX recognizes the trigger
signal, it opens the gate for an appropriate duration to provide the Super
NES with the timing pulses.

4-1-1

SNES DEVELOPMENT MANUAL

1.1.2 SUPER NES SUPER SCOPE SIGHT ADJUSTMENT
The most precise alignment of the Super NES Super Scope's sight oc
curs when the end of its barrel is 3 meters (about 10 feet) away from the
television screen. Please refer to the illustration below.

CRT

~ Line of sight 0
,5m

Optical Axis I

1 m

Visual Axis

Figure 4-1-2 Optical Alignment

The line of sight (visual axis) virtually "sees" what the lens (optical axis)
"sees" when the distance between the television screen and the end of
the Super NES Super Scope barrel is 3 meters (10 feet). As demonstrat
ed above, an offset occurs as this range is moved away from 3 meters, in
either direction. The function of the "ADJUST AIM" and "TEST AIM" por
tion of the game is to adjust the optical axis for proper sight alignment
through software at the beginning of the game. This adjustment takes into
account all electrical delay times. When the adjustment is performed, an
insensitive area is created at the edge of the screen. The greater the off
set adjustment, the larger this insensitive area becomes.

The following illustration demonstrates an example of the difference be
tween what your eye might see through the Super NES Super Scope and
what the lens sees, during the Adjust Aim mode.

ADJUST AIM
• What your eye sees (visual axis)

X What the lens sees (optical axis)

D Television screen

D Virtual screen (coordinate)

Figure 4-1-3 Virtual Screen Alignment

4-1-2

INTRODUCTION

In order for proper alignment to occur, the virtual screen must be moved
in the direction of the arrow. As the virtual screen is moved up and to the
left an insensitive (shaded) area is created at the edges of the screen.
This shaded area cannot be processed. For this reason, the Super NES
Super Scope operation manual recommends that the Super NES Super
Scope be used at a range of 3 meters (about 10 feet) from the television
for optimum performance. At this distance the insensitive area at the
edge of the screen is, for all practical purposes, eliminated.

1.2 BASIC SUPER NES SUPER SCOPE SPECIFICATIONS

• Range:

• Resolution:

• Lens:

• Batteries:

• Controls:

3.28 - 16.4ft (with fully charged batteries)

About 1 character (8 dots, in x and y orientation)

f=150mm,30<j>

Six size AA batteries

• Power switch

• Single shot/multiple shot selection switch (This is a three-position switch, .
which is also used as the power switch.)

• Pause switch (See Note 1)

• Cursor switch (See Note 2)

• Trigger switch

Note 1: This function varies depending on the software, and is used to
pause during a game or change screens.

Note 2: The cursor is displayed on the screen while this switch is held
down. (The location signal is transmitted continuously.)

4-1-3

SNES DEVELOPMENT MANUAL

1.3 SUPER NES PROGRAM ADDRESS

1.3.1 REGISTER BIT ASSIGNMENT
The connector for #2 controller serves as the interface between the Su
per NES Super Scope-RX and the Super NES. Like a standard controller,
the Super NES controller can read signals automatically. Address and bit
assignments are indicated in the following figures ..

D7 DO

421B (H)

I] Controller
#2

~--~--------~----~--~----~--~~--~

~--~----~--~----~--~----~--~~--~

1 1 I 1 421A (H)

421A (H) is always FF (H). D7, 6, 5 and 4 of 421A(H) are unspecified bits.
D3, 2, 1, and 0 of 421A (H) and D2 and 3 of 421B (H) are Super NES Super
Scope ID codes.

213C (H) Horizontal counter latch

213D (H) Vertical counter latch

The horizontal/vertical counter is a hard counter whose latch trigger is set by
the Super NES Super Scope.

213F (H) I I EXT I
D6 of 213F (H) is the external latch flag.

Figure 4-1-4 Address and Bit Assignments

4-1-4

INTRODUCTION

ITEM ACTIVITY EXPLANATION
LEVEL

Trigger High Indicates that the trigger has been pulled.

Cursor High Indicates cursor mode.

Single/multiple High Indicates single or multiple shot mode.

Pause High Indicates that the pause button is pressed.

Noise High Indicates that noise disturbance is impairing operations.

Null High Indicates that a valid raster signal could not be found.

H counter --- The H-position of the hit

V counter --- The V-position of the hit

EXT latch High Indicates that the data was set to the HV counter.

The external latch only can be reset by read. (It cannot be reset by the write command.)

Table 4-1-1 Signal Bit Definitions

4-1-5

SNES DEVELOPMENT MANUAL

Chapter 2. Principles of the Super NES Super Scope

2.1 PRINCIPLES OF THE SUPER NES SUPER SCOPE
A comprehensive explanation of the Super NES Super Scope's operation would
involve a wide spectrum of topics and require more space than is allowable here.
The following is a basic, if cursory, description.

The Super NES projects 60 pictures per second on the television screen. That is,
every 1/60 second, a picture frame is projected on the television. But before ex
plaining how the picture is drawn, it is necessary to describe the Braun tube or
CRT in the television set.

A florescent material (phosphor coating) is fused to the inside of the Braun tube's
glass screen. Light is emitted when electrons bombard this florescent material.

The inside of the Braun tube resembles a funnel (refer to the figure below) and an
"electron gun" is located at the rear of the tube. (This is the section which extends
from the back of a television.)

Florescent Material
(Phosphor Coating)

Figure 4-2-1 Picture Tube

~_-- Electron Gun

~ Deflection Coils

4-2-1

PRINCIPLES OF THE SUPER SCOPE

The electron gun discharges a beam of electrons toward the screen. This, by it
self, would only light a fixed spot where the electron beam hit the screen; howev
er, deflecting coils are attached to the base of the tube and a signal is transmitted
to the coils to drive the electron beam in the direction desired.

- ------ --- -I -
-

Figure 4-2-2 Scanning

Using this technique, the electron beam scans from left to right beginning at the
top left of the screen and moving successively down the screen, as shown in the
above figure. Each horizontal line formed by the scan is called a scan line or a
raster. Light and dark areas are created by varying the intensity of the electron
beam as it scans across the florescent material. This is how each picture is drawn. '

The Super NES contains a PPU (picture processing unit), for controlling the pic
ture projected on the screen. Inside the PPU is a "raster counter" (or "HV counter")
with a register which holds the X and Y coordinates of the electron beam in the
Braun tube as it scans.

When the Super NES Super Scope is aimed at the screen, a small area on the
screen is seen by the Super NES Super Scope.

-I -

Figure 4-2-3 Area Seen by Super NES Super Scope

4-2-2

SNESDEVELOPMENTMANUAL

As shown in the previous figure, the instant the electron beam scans across the
area seen by the Super NES Super Scope, it sends a signal to the Super NES.
The Super NES registers the value of the PPU raster counter using this timing sig
nal. With this data, the Super NES can detect the point on the screen where the
Super NES Super Scope is aimed.

2.2 SUPER NES SUPER SCOPE PROGRAMMING
We assume that most readers are involved in programming Super NES Super
Scope games ..

-.I" 16.6ms
I~ 63.511s

:~
1 Frame

~:

Figure 4-2-4 Vertical Positioning

The above figure depicts the output of the Super NES Super Scope's light recep
tion amplifier under these conditions. Each of the pulses represents a raster in the
Braun tube. The Super NES Super Scope system picks a pulse and transmits it to
the Super NES raster counter. Pulse selection determines the vertical location on
the screen by the raster count. This is done under a fixed set of conditions by the
Super NES Super Scope's internal CPU.

The horizontal position is determined by the timing of pulses with respect to the
Super NES Control Deck's horizontal synchronization signal. (Refer to the figure
below.)

Raster
Pulse .~

~--------------------------

Horizontal ,- 1--
SyncSi~ I ________________________ ~ 1_-------

I~ 63.5 lls ~I

Figure 4-2-5 Horizontal Positioning

4-2-3

PRINCIPLES OF THE SUPER SCOPE

The time corresponding to one dot on the screen is an amazing 180 nsec. This
processing speed cannot be achieved by most micro-computers, and in the Super
NES Super Scope system, the raster pulse is not processed directly by the CPU.
Signal transmission and selection is done by opening and closing the raster gate,
controlled by the CPU, and is depicted in the block diagram in Chapter 1. An area
of caution for Super NES Super Scope programs is that Super NES Super Scope
operations are not synchronized with the Super NES. The timing relationship be
tween the Super NES Super Scope, the Super NES screen scan, and the pro
gram, described later, should be kept in mind when programming.

2.3 THE SUPER NES HORIZONTAUVERTICAL COUNTER
The horizontal/vertical counter of the Super NES plays a critical role in the Super
NES Super Scope system, yet is not described in much detail in the Super NES
programming manual or other documents. For this reason, we will present an
overview here.

Vertical Sync Signal

Horizontal Sync Signal

CLR
Video Clock

External Latch Pins

Figure 4-2-6 HorizontalNertical Counter

Vertical
Counter

The horizontal counter value corresponds to the horizontal location of the raster
and the vertical counter value corresponds to the vertical location of the raster.

These values can be stored by sending a pulse to the external latch pin. The Su
per NES software then reads this, and is able to detect the location on the screen
which corresponds to the external latch pulse.

In the Super NES Control Deck, a flag is set when the horizontal/vertical latch is
set. This flag does not operate in synchronization with the programming flow, and
interrupts are not supported by the Super NES Control Deck. Hence, program
ming precautions should be taken.

4-2-4

SNES DEVELOPMENT MANUAL

Chapter 3. Super NES Super Scope Functional Operation

3.1 SUPER NES SUPER SCOPE CPU
The Super NES Super Scope CPU is a one-chip CPU for processing Super NES
Super Scope key input (trigger, cursor, etc.), data pulse generation, and transmis
sion of screen timing signals.

3.1.1 KEYS

Trigger
Cursor

Trigger
Continuous input
One-shot input Pause

Multiple/single shot Switches between continuous trigger in
put and one-shot input

3.1.2 KEY PRIORITY
Priority is given in the order of the trigger, cursor and pause keys. Two
types of trigger codes are generated by switching between the multiple
and single shot modes.

3.1.3 KEY RECOGNITION
A key is recognized as "on" after it is on for 1 msec or more, and "off' after
20 msec or more.

3.1.4 SIMULTANEOUS KEY INPUT
Only the trigger and cursor keys can be input at the same time. Other key
combinations are not recognized.

3.2 SUPER NES SUPER SCOPE BLOCK DIAGRAM

~ A Infra-red filter

~---------------~----8--- . ~~~Ii~:rceiver/

To: Super NES Super
Scope receiver

Lense CPU

Infra-red
Transmitter...--......

Infra-red beamL..-----'

Figure 4-3-1 Super NES Super Scope Block Diagram

4-3-1

Raster Gate

FUNCTIONAL OPERA TION

3.2.1 LIGHT RECEIVER/AMPLIFIER
The light receiver/amplifier receives the light signal from the CRT, con
verts it to pulses, and transmits the pulses to the Super NES Super
Scope CPU. It consists of a pin photo-diode H-amp, and an M-amp for
signal amplification and pulse conversion.

3.2.2 SUPER NES SUPER SCOPE CPU (SM595)
The Super NES Super Scope CPU reads the Super NES Super Scope,
generates the corresponding code, controls the raster gate, and sends
the raster signal to the Super NES Super Scope receiver.

3.2.3 LIGHT OUTPUT
This converts the pulse generated by the CPU into an infra-red beam. It
consists of an infra-red LED and its driver.

3.3 SUPER NES SUPER SCOPE FLOW DIAGRAM

No Key
ctuated?

Figure 4-3-2 Super NES Super Scope Flow Diagram

The Super NES Super Scope does not process the raster signal.

4-3-2

SNES DEVELOPMENT MANUAL

3.4 INFRA-RED DATA TRANSMISSION FORMAT

3.4.1 Overview
The Super NES Super Scope infra-red signal is composed of two seg
ments. The first segment contains a digital code, which defines the sin
gle-shot trigger, multiple-shot trigger, cursor, and pause. The second
segment is the raster segment. The Super NES Super Scope CPU opens
the raster gate and connects the light receiver/amplifier and light output.
The raster signal is output from the CRT for a set duration of time.

11111

... ..
Raster Gate Open

Code Segment Raster Segment

Figure 4-3-3 Raster Signal

3.4.2 DESCRIPTION OF ONE BYTE
The Super NES Super Scope system can generate four types of codes
based on the status of the keys. One byte is defined as follows.

:a; b ia' b :a; b ia' b :a; b ;a' b 'a' b ;ai .. ' '' .' ... ,," ... ' ,

Jl~ ·n~ ·n~
.. , , ... ,,".-I , I I I I , I

n n n n rL
1 2 3 4 5 6 7 8

• •
• 577 Jls • : ,

• • a = 10 Jls b = 71 Jls •

Figure 4-3-4 Definition of one byte
One byte is composed of a block of eight pulses as shown above.

4-3-3

FUNCTIONAL OPERATION

The code is generated by combining five one-byte blocks as shown be
low.

, c • d • c , d c . d , c , d • c • ' ... _ -.... -, ... -: ... -: ... -: ... -; ... -' ' , , ,

J I I I I I I I 1 L
1 2 3

c = 577 J..ls d = 651 J..ls

Figure 4-3-5 Output Signal Code

Byte 1 is the switch byte.
Byte 5 is the end byte.
Bits 2, 3 and 4 are data bits

3.4.3 COMMUNICATION CODES
Four codes are defined as follows.

4 5

Cursor J L
Trigger d
(multiple shots)

Trigger J
(single shot)

Pause J
Figure 4-3-6

Outputs while cursor is held down

'-----II ____ I _
When the "multiple shots" switch is "on", pulses are output
while the trigger is held depressed.

When the "multiple shots" switch is "off", one output pulse
occurs each time the trigger is depressed.

This output pulse occurs only when the pause key is
depressed.

Definitions of codes.

4-3-4

L

L

L

SNES DEVELOPMENT MANUAL

3.4.4 RASTER SIGNAL TRANSMISSION TIMING

a. Trigger (single shot)

II I
+\;4 Wait ·:1:otreI14

RasterOutput(85ms) I (10 ms) (5.5 ms)\

Chattering (1 ms) Wait (0.6 ms)

b. Trigger (multiple shots)

1111

~;4 ~!
! Bounce (20 ms) 1

IIII
d ! l: .. : Ii ~'ft~~~~~~~~aster Output (85 ms;i~'ft~~x;;~~~~1f ~~pur

Chattering (1 ms) Wait (0.6 ms) Chattering (1 ms) Wait (0.6 ms)

Figure 4-3-7 Raster Signal Transmission Timing, part 1

The cycle above is repeated while the trigger is held down. When the trig
ger is released, a single shot cycle occurs as the final cycle

4-3-5

FUNcnONALOPERAnON

c. Cursor

I II I II ,I ~'fi'~~l~g~l~aster Output (85 mS~!:~'fi'~~)~;i~1~e5 2~pur
Chattering (1 ms) Wait (0.6 ms) Chattering (1 ms) Wait (0.6 ms)

d. Pause

I I
.:... ~it ere:'" ~.

l: Wait ; 0 e·; Bounce (20 ms) . I (10 ms) (5.5 ms)\

Chattering (1 ms) Wait (0.6 ms)

Figure 4-3-7 Raster Signal Transmission Timing, part 2

The raster gate opens during raster output and the raster pulses are
transmitted to the Super NES Super Scope receiver. The raster pulse
timing is not defined. The Super NES Super Scope and Super NES Con
trol Deck are not synchronous.

4-3-6

SNES DEVELOPMENT MANUAL

Chapter 4. Super NES Super Scope Receiver Functions

4.1 SUPER NES SUPER SCOPE RECEIVER BLOCK DIAGRAM
The Super NES Super Scope receiver first receives the infra-red signal from the
Super NES Super Scope, and transmits the key switches and screen timing sig
nals to Super NES Control Deck.

From: Super NES
Super Scope I~ra~ed

Receiver 1---..---......

Infra-red beam
Amplifier

Raster Gate

Super NES External
Control Deck L...-_____ L_a_tc_h_ln....;p_u ___ t

Figure 4-4-1 Receiver Block Diagram

4.1.1 INFRA-RED LIGHT RECEIVER/AMPLIFIER
Receives the infra-red signal from the Super NES Super Scope, converts
it to pulses, and transmits the pulses to the Super NES Super Scope re
ceiver CPU. It consists of a pin photo diode H-amp and an M-amp for sig
nal amplification and pulse conversion.

4.1.2 SUPER NES SUPER SCOPE RECEIVER CPU
The CPU analyzes the code signal from the Super NES Super Scope,
controls the shift register flag and raster gate, and sends the raster puls
es to the Super NES external latch pin.

4.1.3 SHIFT REGISTER
This is the interface between the Super NES Super Scope receiver CPU
and the Super NES Control Deck, and is similar to the type of interface
found in a controller.

4-4-1

4.1.4 OPERATIONS FLOW DIAGRAM

ode
~ __ ------,N;....;;..o~ Detected?

RECEIVER FUNCTIONS

Send Key Information
to SNES

Raster No
cceptable? >-'-"----------,

Figure 4-4-2 Operation Flow Diagram

In addition, a pulse check is performed during code detection for noise
detection.

4-4-2

SNES DEVELOPMENT MANUAL

4.2 SUPER NES SUPER SCOPE RECEIVER INTERFACE

SNE S CONTROLLER PORT #2 1 1 VDD

2 CUP1

3 PIS (OUT 0)

4 4017 DO

5 4017 D1

6 EXT LAT I---

PIS CLOCK~
7 GND I DIN 4021 08

rh
~

TER GATE P1 P2 P3 P4 P5 P6 P7 P8 RAS

SUPER NES SUPER I 1
SCOPE RCVR-CPU

TRIGGER

CURSOR

SINGLE/MUL TIPLE SHOT

PAUSE

NOISE

NULL

Figure 4-4-3 Receiver Interface Schematic

4-4-3

4.3 CODE PULSE DETECTION

4.3.1 ONE BIT CODE DETECTION

Block
(1)

81 Jls

(2) (3) (4)

IlIl
1 1 1 1 1 ,-

A~ ____ l ____ l ____ l ________ ~ : : :
1 1 1 1 1 1

B~ ____ ~ ____ ~ ____________ J : :

c~ ____ l __________________ ~ :
1 1

D~ ______________________ J

Figure 4-4-4 One Bit Code Detection

RECEIVER FUNCTIONS

(5)

A block is good if five - 81 Jlsec pulses are detected in succession in any
of the ranges, A, B, C and D shown above.

A noise flag is set if the "high" level is detected 36-39 Jlsec after the ris
ing edge of a pulse is detected.

4-4-4

SNES DEVELOPMENT MANUAL

4.3.2 RASTER PULSE DETECTION

The start of detection and input of raster pulses do not coincide in the ex
ample below.

, 63us'
,:" ~: ,

Infrared :
amplifier :
output -, 1 2 3 4 , 5 6 7 8 9 ,

Raster gate! Dete~tion start tj 28us

Infrared
amplifier
output

:.. Detection period 1 14ms ~NOP ~' ,

The latch gate opens when pulses 1-6 are detected with the precise cy
cle time.

In the next example, the start of detection and input of raster pulses coin
cide.

1 1 12 3 4 5 6 7 8
1 1
1 1
1 1
1 1
1 1

Detection start ' .. 1 ~' 1 5msNOP
~

1
~ .

Two pulses immediately following the start

If two raster pulses are detected immediately following the start of raster
pulse detection, it is determined that the detection cycle occurred at the
same time as raster pulse input. In this case, the receiver CPU would per
form time calculations for 5 msec. In this frame, the CPU does not at
tempt to output the raster signal.

An error occurs when a raster exceeds 5 msec. (With the existing optical
system, this may happen 1.64 feet away from a 14-inch television
screen.)

4-4-5

4.4 FUNCTIONAL DESCRIPTION

4.4.1 CURSOR MODE

Raster
signal

~

RECEIVER FUNCTIONS

End cycle with the
trigger switch off

__ --A, COd\

Infrared
amplifier
output • • 85ms·· •

• • • • • • 4 ~. ' •
• ' 102ms. : 102ms' 22ms: •

4021P7 ~:4~'-----------'~r:------------~~1 ~ ~

(CURSOL)1.1 ms {"t i r
Raster
detection
cycle

• I

•
•
•
•
•

O.2ms ~:

Figure 4-4-5 Cursor Mode Raster Detection Cycle

In the cursor mode, the cursor is displayed continuously on the screen.
To accomplish this, raster pulses are transmitted for five frames (85
msec) after code data is sent from the Super NES Super Scope.

4-4-6

SNES DEVELOPMENT MANUAL

4.4.2 TRIGGER MODE (SINGLE SHOT)

The next code is prohibited
in this period

Trigger COdJe

Infrared I...&..L...&..+-~;;;;"";';';;';;;;"";';';;';;;;"";';';;';;;;;;';;;';;;;';';';;;;;;;;;;;;;';;;;';;;;';;;';;;;;;;;;;;;;;;;" ___________ _

amplifier : , 85ms t , ,
•• ~,

,
output '

,~.-~---------~ , ,
I

, .,
4021 P8 (TRIG)

~,

4021P6
(single/multiple)

Raster
detection
cycle

102ms

I~ 1.1ms

t ,
t
t.

I

,
t
t
t

81ms

0.2ms : t

----... '+-

I
t ,
t

~t

Figure 4-4-6 Trigger Mode, Single Shot

4-4-7

4.4.3 TRIGGER MODE (MULTIPLE SHOTS)

Code",

Infrared
amplifier
output

4021P8

• • 85mS •
• '4 ~.
• ' S' .' 102m.

•
• ,

102mS
~.

I , , , , ,

•
•
•
•

~I ,
•
• ,
• ,

RECEIVER FUNCTIONS

End cycle with the
trigger switch off

22mS: •
• ----+j ..--

•
•
• , , r (TRIG) 1.1 ms.! t-

I~----------~------------~----------T-
4021P6 '
(single/multiple) \

Raster
detection
cycle

,------------+-------------~--------~~--,
• , ,

---+:
O.2mS ·

Figure 4-4-7 Trigger Mode, Multiple Shots

4.4.4 NOISE FLAG

36 - 39us ~' , '36 - 39us " . ,

~~~:-----l~i:_ .. ~ __________ ~'ILJl! ::,-----------------Infrared amplifier I· : 
output . 

4021P1 
(NOISE) 

, 
, 20ms , 
:.. ~: -------II I~ 

Fig u re 4-4-8 Noise Flag 

Under the timing shown above, the noise flag is set when a pulse with a 
cycle time different from that used by the Super NES Super Scope sys
tem is detected while waiting for the code. 

4-4-8 



SNES DEVELOPMENT MANUAL 

4.4.5 NULL BIT 

Super NES Super Scope 
is not aimed at the screen 

--------~--------
/~~< 

-, ~-~0 

, ,v '''xx ,,:,:_x::t~ Infrared 
amplifier--....&...&....&,..L...I.
output y J • 

Raster 
gate 

Raster 
detection cycle 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• I 
I 

I 

4021P2 __________________ ~ 
(NULL) 

Figure 4-4-9 Null Bit 

Super NES Super Scope 
is aimed at the screen 

--------~--------

rtJ 
I 
I 

I 

The null flag is set if a valid raster signal is not detected during a raster 
detection cycle. It is reset if a valid raster signal is detected in a subse
quent cycle and the raster gate is opened. 

4.4.6 PAUSE BIT 

Infra-red 11111 IIIII Amplifier i 
Output I I 20ms I I I 20ms 

1.35ms---.{ :~ 
I 

~' 1.35ms~ I~ ~, 
I 1 I 

I I 
, 

I 

,-
4021P5 I (Pause) 

Figure 4-4-10 Pause Bit 

This flag is set when a pause code is received from the Super NES Super 
Scope. 

4-4-9 



RECEIVER FUNCTIONS 

4.4.7 CURSOR + TRIGGER CYCLE 

4.4.7.1 TRIGGER (SINGLE SHOT) 

Raster Signal 

" Cursor Code 

Figure 4-4-11 Trigger, Single Shot 

4-4-10 



SNES DEVELOPMENT MANUAL 

4.4.7.2 TRIGGER (MULTIPLE SHOTS) 

Cursor Code 

Infra-red 
Amplifier 
Output 

4021P8 
(Trig) 

4021P6 
(Single/ 
Multiple) 

4021P7 
(Cursor) 

Raster Signal 

1 
1 
1 

: .... 

1 1 

1 ... 85ms.,' 
I 1 

102ms 

1 
1 
1 
I~ 

1 
1 
1 

"'~ 
1 
1 
1 
1 
1 
1 

102ms 

1 
1 

.,' 1 

'" 

1 
1 
1 
1 

1 
1 

~------------~i~~ 1 1 

1.1 ms---': 
1 
1 
~ 1.1ms~ :.-

1 
1 
1 
1 
1 
1 
1 

1.1ms~ 
1 

1 
1 

~ 
1 1 
1 1 

0.2ms ---.! 
I 

1 1 

j\ 
1 1 
1 

1 
1 
1 

Raster Detection 
: 80.8ms : 80.8ms 1 Cycle , ... I.... .,: 

1 

Figure 4-4-12 Trigger, Multiple Shots 

Same as the cursor mode except the trigger flag and single/multi
ple shot flags vary. 

Note: In this section, the timing charts for each 4021 Px flag (trig
ger, cursor, single/multiple shot, etc.) are expressed in negative 
logic (active low); however, these are positive logic (active high) in 
the Super NES program. 

4-4-11 



GRAPHICS 

Chapter 5. Graphics 

5.1 LIMITATIONS ON GRAPHICS 
Because Super N ES Super Scope operations are based on the detection of ras
ters on a television screen, the screen used must have a minimum level of bright
ness. 

Of particular concern is the fact that the Super NES Super Scope is not sensitive 
to the color red. This is due to differences in the afterglow characteristics of the 
fluorescent materials used in the Braun tube for the three colors, red, green and 
blue. The period of florescence for red is relatively longer, as shown in the table 
below, and hence the change in the volume of light over time is smaller (16 KHz 
horizontal synchronization frequency component), and raster timing is more diffi
cu It to detect. 

Red 

Green 

Blue 

1.2 msec 

300 J.lsec 

250 J.lsec 

The minimum level of brightness which the Super NES Super Scope can detect is 
very difficult to predict due to the various factors involved (television type, year of 
make, screen adjustment, etc.). An Optical Color Sensitivity Chart is provided on 
the following page for programming reference. 

If you wish to detect the location on the screen in one-dot increments or draw a 
dark picture, such as of outer space, you may wish to insert a bright single-color 
screen for one frame. 

When accuracy is important, be careful of the variation in luminosity across the 
screen. On a 14-inch screen there is about 1.5 times variation in luminosity be
tween the center and the perimeter of the screen. When the screen is dark, the 
Super NES Super Scope signal may be delayed, and the location detected will be 
shifted to the right. This may be corrected in the program or the Super NES color 
operation function may be used to correct for luminosity. 

NOTE: Nintendo's products and game programs, designed in accordance 
with these specifications, are subject to claims of patent and patent pending 
owned and/or licensed by Nintendo exclusively for the benefit of Nintendo 
and its authorized licensees. Nintendo does not license such rights for any 
other use or purpose. Nintendo does not warrant or represent against 
claims of patent infringement by third parties. 

4-5-1 



SNES DEVELOPMENT MANUAL 

5.2 SUPER NES SUPER SCOPE OPTICAL COLOR SENSITIVITY 
CHART 

1F ----------------------------------------~----------~ 
1E 
1D 
1C 
1B 
1A 
19 
18 
17 
16 
15 
14 

G) 13 
::IJ 12 
~11 
210 
OOF 
g OE 
oOD 
&,OC 
CD OB 

Provisional 

-------------.-------------~--------------r----------- --, , , , , , , , , , , , 
I 

B 

, , 
--------------r------------- j

--------------,--------- ----

OA , 
09 : 08 ______________ L __________ _ 

--~--------------
07 
06 
05 
04 
03 
02 
01 

Insensitive 

, , , , , , , , 

00 ~----------~ ____________ ~ ____ ~--____ 4_ __________ ~ 

o 1 234 5 678 9 ABC D E F10 12 14 16 18 1A 1C 1E 1F 
BLUE Color Code 

SONY KV-14MD1 RGB MULTI 
Luminosity White Center 

Figure 4-5-1 Optical Color Sensitivity Chart 

The Super NES Super Scope is not sensitive to red at all. The error increases in 
area "A", above. There is no problem in area "B". This chart is based on the mea
surement of a single color on the screen and should be used as a reference only, 
since the screen pattern does introduce variations. 

4-5-2 



SUPER NES MOUSE SPECIFICA TlONS 

Chapter 6. Super NES Mouse Specifications 

6.1 INTRODUCTION TO SUPER NES MOUSE 
The Super NES Mouse is a special purpose serial mouse. Displacement data de
tected in the mouse is processed on a custom chip. Data is input to the Super 
NES console via the 7 pin connector as key data. The mouse does not burden the 
program in any way. The programmer need only call the standard basic input/out
put system (BIOS) subroutine for processing mouse data. Thus, the Super NES 
Mouse is substituted for the standard controller. The mouse has three tracking 
speeds. A speed selection switch inside the mouse can be controlled by the fol
lowing two methods. 

• Game software which allows user selection 

• Game software which provides a fixed speed 

4-6-1 



SNES DEVELOPMENT MANUAL 

6.2 SUPER NES MOUSE DATA FLOW 
Super NES Mouse data is transmitted to the Super NES control deck in a serial in
put format, like the standard controller. A 32 bit data string is transmitted; howev
er, only 24 bits are used. The figure below shows a valid data string transmitted to 
the Super NES control deck, from the Super NES Mouse. Signals from the Super 
NES Mouse are transmitted in negative logic and converted to positive logic data 
strings by the input inversion buffer in the Super N ES control deck. Note that all 
the data shown has already been loaded into the Super NES control deck. 

SDO SD1 SD2 SD3 SD4 SD5 SD6 SD7 --... Unused ~ 

0 I 0 I 0 I 0 I 0 I 0 L 0 I 0 

... ... 

L - -
SDB SD9 SD10 SD11 SD12 SD13 SD14 SD15 -

R I L I Speed data I Signature -
Button Button I 0 I 0 1 0 I 1 
8010 and 11 contain tracking speed data: 00 = slow, 01 = normal, and 10 = fast. 

... ... 

1-
- -

SD16 SD17 SD18 SD19 SD20 SD21 SD22 SD23 ---
Y II" Y Displacement -~ 

Direction I I I I I I 
8016 = 0 for downward, 1 for upward. 

... ... 

1-
- -

SD24 SD25 SD26 SD27 SD28 SD29 SD30 SD31 -
X II" X Displacement • Direction I I I I I I 

8024 = 0 for right, 1 for left. 

Figure 4-6-1 Valid Super NES Mouse Data String 

4-6-2 



SUPER NES MOUSE SPECIFICA TlONS 

6.2.1 DATA TRANSMISSION 
The Super NES Mouse has four 8-bit shift registers. These registers are 
serially connected as indicated by the arrows in the figure on the previous 
page. The Super NES Mouse transmits 32 bits of data to the Super NES 
control deck following each OUTO pulse, using CUPO as a clock pulse. 
The Super NES control deck transmits this OUTO pulse at a fixed interval. 
The sequence is from SDO to SD31 . 

6.2.2 READ METHODS 
For details concerning the manner in which the Super NES control deck 
reads serial controller data, refer to "Joy Controller" in the "Software" sec
tion of this manual. 

6.2.2.1 METHOD 1 

Sixteen bits are read by hardware and 16 bits are read by soft
ware. Any complications arising from the use of this method 
may be avoided by using the enclosed standard BIOS, 
"mouse_read" . 

6.2.2.2 METHOD 2 

Thirty-two bits are read by software. 

ou~~ ________________ __ 

CUPO 

4016 DO I 

(401700) 
(SD--) 

Figure 4-6-2 Serial Data Read Timing 

4-6-3 



SNES DEVELOPMENT MANUAL 

6.3 SPEED SWITCHING 

Super NES Mouse speed can be switched as described in the following para
graphs. 

6.3.1 USING SOFTWARE 

The programmer should write 1 in 00 of 4016H (OUTO is HI), and imme
diately read 4016H. (Read 4017H for controller 2). Then, set OUTO to 
LOW, and immediately read 4016H again. (Read 4017H for controller 2). 
The mouse speed will switch to the next setting, in the order of slow, nor
mal, fast, and back to slow, each time this operation is performed. 

6.3.2 USE OF OUTO AND CUPO SIGNALS 

Set OUTO to HI, and set CUPO once to [LOW ~ HIGH] (read 4016H). 
Next, set OUTO to LOW, and once again set CUPO to [LOW ~ HIGH]. 
This changes the mouse tracking speed by one setting. The speed is 
changed by two settings if CUPO is set LOW to HI twice while OUTO is HI. 

6.3.3 CAUTIONS 

Once switched, the speed mode is output to S01 a and S011. Note that 
the speed setting in S01 0 and S011 may not be the same as the speed 
setting in the mouse. The mouse tracking speed should always be 
switched once immediately after connecting the mouse to ensure that the 
mouse tracking speed and the speed setting in S010 and S011 are the 
same. This should also be done when the mouse is accidentally discon
nected during a game. 

The sample software MOUSE.X65 contains a subroutine for switching 
speeds called speed_change. 

(Refer to "Mouse Speed Switching Routine" in the following chapter.) 

OUTO----! 

CUPO u u 

4-6-4 



SUPER NES MOUSE SPECIFICA TlONS 

6.4 DATA 

6.4.1 SIGNATURE (S012-S015) 

The signature is stored in S012 .... S015. Use this code to identity what is 
currently connected to the 7 pin console connector. (When using the 
standard BIOS, check the connection with mouse_con in the Super NES 
register. Refer to "Using the Standard BIOS".) When the mouse is con
nected, the code is 0001 B. Check the signature to verity whether or not 
the mouse is connected. If a different signature appears (signatures up to 
1111 B may be assigned to input devices other than a mouse), input data 
should be inhibited. When nothing is connected or a standard controller is 
connected, the signature is OOOOB. 

6.4.2 SPEEO OATA (S010 and S011) 

The speed data identifies whether the speed mode in the mouse is set to 
slow (OOB), normal (01 B) or fast (1 DB). The mouse contains an internal 
speed switching circuit which switches between the three different track
ing speeds. Switching between speeds is done using software in the Su
per NES console. (Refer to "Speed Selection and Cursor Movement" to 
switch the tracking speed). S010 and S011 contain the data the mouse 
transmits to the Super NES console to inform the Super NES console 
which speed mode is currently active. 

6.4.3 LEFT ANO RIGHT ACTUATORS (S08 and S09) 

Bit S09 is "1" when the left mouse actuator is pressed, and SOB is "1" 
when the right actuator is pressed. 

4-6-5 



SNES DEVELOPMENT MANUAL 

6.4.4 X, V ABSOLUTE DISPLACEMENT (SD16-SD31) 

When moving an object or BG with the mouse in a positive direction 
(S016 and S024 = 0), add the X and Y data to the respective horizontal 
and vertical positions. When moving an object or BG in the negative di
rection (SO 16 and S024 = 1), subtract the seven bits, which are the X 
and Y data less the direction bits (S016 and S024) from the positions. 
Note that S016 and S024 are the most significant bits and S023 and 
S031 are the least significant bits. 

MSB~ ~ LSB 

S01 aS01 ?lS018i S019 s02d s 0211 S0221S023 D~~~~~e~~ 
S010 S011 Speed 

; . ; : i ; , 

o 06' 05 04! 03! 02 j 01 00 Oown Uwer Lower Mode 
it Bit 

1 06 05! 04: 03 i 02 01 00 Up 

0 0 Slow ~ : ...... ~------ Y Oisplacement----~.:: 
Oirection 

0 1 Normal 
, :~ X Oisplacement ~: 

S02~S025!S026i S027; s0281s0291 s030ls031 
Direction of 
movement 

1 0 Fast 0 
[ 

I 
06 05 04 03 02' 01 00 Right 

1 
1 

06 
• 

05 04 03 I 02: 01 00 Left 

06-00 change wIth the amount of mouse dIsplacement. (Max. 3F) 

Figure 4-6-3 Explanation of Oata Strings 2 Bits or Longer 

4-6-6 



6.5 SUPER NES MOUSE SPECIFICATIONS 

6.5.1 ELECTRICAL SPECIFICATIONS 

Operating voltage: 5 V ± 10% 

Current consumption: 50 rnA (maximum) 

SUPER NES MOUSE SPECIFICA TlONS 

6.5.2 OPERATIONAL AND ENDURANCE SPECIFICATIONS 

Resolution: 50 counts/inch ± 15% 

Tracking speed: 250 mm/sec (maximum) 

Useable Life: 5000 hours in powered state (min.) 

(with vertical load of 100 g and voltage of 5 V ± 5%.) 

Actuators: two tact switches (guaranteed to endure at least 2.5 million en
gagements.) 

6.5.3 DIMENSIONS 

Length: 98 mm 

Width: 64 mm 

Height: 35 mm 

Cable length: 1.4 m 

Weight: approximately 140 g 

T 
35mm 

1 
Right Actuator 

Figure 4-6-4 Super NES Mouse Dimensions 

4-6-7 



SNES DEVELOPMENT MANUAL 

Chapter 7. Using the Standard BIOS 

7.1 THE STANDARD BIOS 

Nintendo strongly recommends the use of the following standard BIOS with all Su
per NES Mouse related programming. If the standard BIOS is not used, future 
modifications to the mouse, the Super NES control deck, or related software, 
hardware, or accessories will likely impair or limit the future use and/or compat
ability of such non-standard programs. 

The software enclosed contains a file called MOUSE.X65. This file has two sub
routine programs. 

1. mouse_read: reads serial data from the mouse. 

2. speed_change: switches the mouse speed. 

Whenever mouse_read is used, speed_change should also be used. An explana
tion of how to use these sub-routines is given below. Refer tolRegisters" for a 
summary of the registers needed to use the standard BIOS, mouse_read, and 
speed_change. 

4-7-1 



USING THE STANDARD BIOS 

7.2 MOUSE SERIAL DATA READ ROUTINE (mouse_read) 
This routine is used in the same way the key data read subroutine is used with a 
standard controller. Mouse_read must be called as a subroutine in the main pro
gram at every frame. All information needed for using the mouse can be found in 
the registers shown in the figure, "Standard BIOS Output Register", on the follow
ing page. (Data is read when the mouse is connected to either connector 1 or 2.) 

Cautions concerning this program: 

1. The program, mouse_read, uses an automatic key data read function to 
read the serial data from the mouse. Therefore, the automatic read func
tion must always be turned on when the standard BIOS, mouse_read, is 
used. 

2. Do not call this subroutine during the automatic read (hardware read). 

Refer to "Joy Controller" in the Software section of this manual to cir
cumvent the timing problem. 

3. Always use mouse_read and speed_change together. The mouse track
ing speed must always be switched once immediately after connecting 
the mouse to the Super NES control deck, mouse_read uses speed_
change to do this automatically. The paragraph titled "Super NES 
Mouse Speed Switching Routine" describes how to use the subroutine, 
speed_change. 

4-7-2 



SNES DEVELOPMENT MANUAL 

When connected to connector 1 When connected to connector 2 Significance of data 

mouse_conO mouse connection info. mouse_con1 mouse connection info. 

070605 04 03 02 01 00 070605 04 03 02 01 00 

? 

mouse_spO mouse speed information mouse_sp1 mouse speed information 

070605 04030201 00 07060504030201 00 

? 

mouse_swO mouse switch continuous mouse_sw1 mouse switch continuous 

07 06 05 04 03 02 01 00 07 06 05 04 03 02 01 00 

R L 

mouse_swtO mouse switch trigger mouse_swt1 mouse switch trigger 

07060504030201 00 0706 05 04 03 02 01 00 

mouse_yO, Displacement in Y direction 

07 06 05 04 03 02 01 00 
Dir.I<--Displacement in Y direction-

I I I I I I I 

mouse_xO, Displacement in X direction 

0706 05 04 03 02 01 00 
Dir. k--Displacement in X direction--> 

I I I I I I I 

mouse_y1 , Displacement in Y direction 

07 06 05 04 03 02 D1 00 
Dir. ~--Displacement in Y direction--> 

I I I I I I I 

mouse_x1, Displacement in X direction 

07 06 05 04 03 02 01 00 

Dir.I<--Displacement in X direction--
I L J 1 I J I 

Figure 4-7-1 Standard BIOS, Output Register 

4-7-3 

o I not connected 
1 I connected 

D1:0 DO:O slow 
D1:0 DO:1 normal 
D1:1 DO:O fast 

R: right button 
L: left button 
OIOFF 
1 ION 

R: right button 
L: left button 
OIOFF 
1/0N 

Dir: Direction bit 
o I down 
1 I up 

Dir: Direction bit 
o I right 
1 I left 



USING THE STANDARD BIOS 

7.3 SUPER NES MOUSE SPEED SWITCHING ROUTINE I 
speed_change (Screen cursor, OBJ and BG move speed 
switching) 
This section describes the speed switching program, speed_change, found in the 
"MOUSE.X65" program (supplied on sample diskette). 

Connector 1. Set the X register to "0" 

Set the number corresponding to the desired speed in the 
mouse_sp_setO register, where slow = 0, normal = 1 and 
fast = 2. 

Connector 2. Set the X register to "1". 

Set the number corresponding to the desired speed in the 
mouse_sp_set1 register. 

After setting the X and mouse_sp_setO or mouse_sp_set1 registers, call the 
speed_change subroutine. The speed will be switched to the desired setting in 
one step. (Because the mouse tracking speed can only be switched in a rotary 
switch fashion, the speed_change subroutine is useful when switching the speed 
twice; for example, to switch from "normal" to "slow".) 

When the mouse tracking speed is changed, the new speed data is transmitted by 
the mouse, and mouse_spO and mouse_sp1 data are rewritten. 

7.3.1 CAUTION 

Do not forget to set the X and mouse_sp_setO or mouse_sp_set1 regis
ters. 

Figure 4-7 -2 Examples of Speed Switching Program Subroutine Call 
Example 1 
Idx #$00 ; Connector 1 
Ida #$01 ; Switch to "normal" speed 
sta mouse_sp_setO 
jsr speed_change 
Example 2 
Idx #$01 ; Connector 2 
Ida mouse_spO ; Look at the current speed, and increase the speed 
inc a 
cmp #$03 
bne change 
Ida #$00 

; to the next highest setting 

; If the current speed is "fast", it changes to "slow" 

change 
sta 
jsr 

mouse_sp_setO 
speed_change 

4-7-4 



SNES DEVELOPMENT MANUAL 

7.3.2 USING THE PROGRAM 

Mouse_read automatically completes the above speed switching at the 
time the mouse is connected. (Refer to "Programming Cautions", Item 3 
later in this section). If mouse_sp_setO and mouse_sp_set1 have been 
cleared, then the mouse speed is "slow" when the mouse is connected. 

If the mouse becomes disconnected and reconnected during a game and 
this program is not being used, the speed must be switched once. 
Mouse_read does this automatically when the mouse is re-connected. 
The speed setting in that case is the same as immediately before the 
mouse became disconnected. 

If mouse_read is used, the entire process is done automatically. No addi
tional steps need be taken. Mouse_read also constantly monitors the 
speed data (mouse_spO and mouse_sp1), thus allowing speed changes 
to be programmed at any time during a game. 

4-7-5 



USING THE STANDARD BIOS 

7.4 SPEED SELECTION AND CURSOR MOVEMENT 

7.4.1 Fast (10B) 

The ratio of cursor displacement to mouse displacement is automatically 
adjusted between 6 levels, from 1: 1 to 6: 1. The ratio varies according to 
the speed the mouse is moved. When the mouse is moved slowly, the ra
tio is 1 : 1 and when the mouse is moved quickly, the ratio increases to a 
maximum 6:1. To move the cursor a short distance, the mouse is moved 
slowly. To move the cursor a long distance, the mouse is moved quickly. 
When the mouse is set to "fast", the cursor moves a longer distance the 
faster the mouse is moved so that the distance the mouse must be 
moved on the table is minimized. 

7.4.2 Normal (01 B) 

The ratio of cursor displacement to mouse displacement is also automat
ically adjusted, as with the "fast" setting. The ratio, however, is smaller. 

7.4.3 Slow (OOB) 

The ratio of cursor displacement to mouse displacement is 1 : 1. This ratio 
is always fixed. For example, if the cursor moves 5 cm when the mouse is 
moved 10 cm, then the cursor will move 10 cm when the mouse is moved 
20 cm. The distance the cursor moves is always proportionate to the dis
tance the mouse is moved whether the mouse is moved quickly or slowly. 
When the mouse is set to "slow", the mouse must be moved a long dis
tance on the table to move the cursor a long distance. 

Note: OOB, 01 B, and 10B are the mouse_spO and mouse_sp1 D1 and 
DO bit data. 

4-7-6 



SNES DEVELOPMENT MANUAL 

7.5 REGISTERS 

The registers required for these subroutines are as follows. 

mouse_conO, mouse_con 1 Mouse connection status (indicates the con-
nector to which the mouse is connected.) 

mouse_yO, mouse_y1 Mouse Y axis data for connectors 1 (YO) and 
2 (Y1) 

mouse_xO, mouse_x1 Mouse X axis data for connectors 1 (XO) and 
2 (X1) 

mouse_swO, mouse_sw1 Actuator status for connectors 1 and 2 (01 H 
= right actuator, 02H = left actuator) 

mouse_swtO, mouse_swt1 Trigger status for connectors 1 and 2. 

mouse_spO, mouse_sp1 Mouse speed mode for connectors 1 and 2 
(OOH = slow, 01 H = normal, 02H = fast) 

mouse_sbO, mouse_sb1 Work register for trigger status 

mouse_sp_setO, mouse_sp_set1 For speed changes 

connect_stO, connect_st1 DS 1 connection start check. 

regOI, regOh Multi-purpose work register 

4-7-7 



USING THE STANDARD BIOS 

*************************************************************************************************** 

.* 

.* 

.* 

.* 

.* 

mouse.x65 
Super NES Mouse System file 
March 11, 1992 
(c) 1992 Nintendo of America 

.************************************************************************************************** 

.************************************************************************************************** 

.************************************************************************************************** 

.* Mouse Driver Routine (Ver 1.00) 

.************************************************************************************************** 

*************************************************************************************************** 

db 'START OF MOUSE BIOS' ;do not delete 

;================================================================ 
.* RAM Definition 

;================================================================ 

regO 
regOI 
regOh 

mouse_con 
mouse_conO 
mouse_con 1 

mouse_sp_set 
mouse_sp_setO 
mouse_sp_set1 

mouse_sp 
mouse_spO 
mouse_sp1 

mouse_yO 
mouse_y1 
mouse_xO 
mouse_x1 

ds 
ds 

ds 
ds 

ds 
ds 

ds 
ds 

ds 
ds 
ds 
ds 

1 
1 

1 

1 

1 
1 

1 
1 

1 
1 
1 
1 

; Work registers 

; Mouse connection port 00=4016 
; Mouse connection port 00=4017 

; Mouse speed setting Uoy1) 
; Mouse speed setting (joy2) 

; Mouse speed Uoy 1 ) 
; Mouse speed Uoy2) 

; Mouse Y direction Uoy 1) 
; Mouse Y direction Uoy 2) 
; Mouse X direction Uoy 1) 
; Mouse X direction Uoy 2) 

4-7-8 



SNES DEVELOPMENT MANUAL 

I 

mouse_swO ds 1 ; Mouse button tu rbo 
mouse_sw1 ds 1 ; Mouse button tu rbo 

mouse_swt 
mouse_swtO ds 1 ; Mouse button trigger 
mouse_swt1 ds 1 ; Mouse button trigger 

mouse_sb ; Previous switch status 
mouse_sbO ds 1 
mouse_sb1 ds 1 

cursol_x ds 1 ;Cursor X position 
cursol_y ds 1 ;Cursor Y position 

4-7-9 



USING THE STANDARD BIOS 

.************************************************************************************************** 

;================================================================ 
.* mouse_read 

;================================================================ 
.* 

;* INPUT 
.* 

;*OUTPUT 
.* 

.* 

.* 

.* 

.* 

.* 

.* 

.* 

.* 

.* 

.* 

If this routine is called every frame, then the mouse status will be set to the 
appropriate registers. 

None (Mouse key read automatically) 

Connection status (mouse_con) 

Switch (mouse_swO,1) 

Switch (mouse_swtO,1) 

Mouse movement (ball) value 
(mouse_x) 

DO=1 Mouse connected to Joy1 
D1 =1 Mouse connected to Joy2 
DO=left switch turbo 
D1 =right switch turbo 
DO=left switch trigger 
D 1 =right switch trigger 

D7=0 Positive turn, D7=1 Negative tum 
D6-DO X movement value 
D7=0 Positive turn, D7=1 Negative turn 
D6-DO X movement value 

.************************************************************************************************** 

mouse_read 

php 
sep #$30 

10 
Ida $4212 
and #%00000001 
bne 10 ; Automatic read ok? 

Idx #$01 ; Joy2 
Ida $421a 
jsr mouse_data 

Ida connect_st1 
beq - 20 

jsr speed_change 
stz connect_st1 

4-7-10 



SNES DEVELOPMENT MANUAL 

pip 
rts 

20 -
dex 
Ida $4218 ; joy1 
jsr mouse_data 

Ida connect_stO 
beq - 30 

jsr speed_change 
stz connect_stO 

30 -
pip 
rts 

mouse_data 
sta regOI ; (421 a 4218 save to regO) 
and #%00001111 

cmp #$01 ; Is the mouse connected? 
beq - m10 

stz mouse_conO,x ; No connection. 

stz mouse_xO,x 
stz mouse_yO,x 
stz mouse_swO,x 
stz mouse_swtO,x 
stz mouse_sbO,x 

rts 
m10 -

Ida mouse_conO,x ; When mouse is connected, speed will change. 
bne - m20 ; Previous connection status 

; (mouse.com judged by lower 1 bit) 
Ida #$01 ; Connection check flag on 
sta mouse_conO,x 
sta connect_stO,x 
rts 

4-7-11 



USING THE STANDARD BIOS 

I 

m20 -
Idy #16 ; Read 16 bit data. 

m30 -
Ida $4016,x 
Isr a 
rol mouse_xO,x 
rol mouse_yO,x 
dey 
bne m30 -

stz mouse_swO,x 

rol regOI 
rol mouse_swO,x 
rol regOI 
rol mouse_swO,x ; Switch tu rbo 

Ida mouse_swO,x 
eor mouse_sbO,x ; Get switch trigger 
bne m40 -

stz mouse_swtO,x 

rts 
m40 -

Ida mouse_swO,x 
sta mouse_swtO,x 
sta mouse_sbO,x 

rts 

4-7-12 



SNES DEVELOPMENT MANUAL 

.************************************************************************************************** 

;================================================================ 
.* Speed_change 

;================================================================ 

;* Set speed to mouse_sp_set. Give mouse port the value of x and call this routine. 

;* If this routine is called without setting mouse_sp_set, then the previous speed will be 
;* assigned to the current speed. 
;* Normally, the mouse speed data will be saved to mouse_sp. 
;* If the mouse speed cannot be set, then the error code will be set to mouse_sp. 
;* INPUT 
.* 
.* 

;* OUTPUT 
.* 

.* 

.* 

X=connection port (X:0=joy1 1 =joy2) 
MOUSE_SP _SETO= JOY1 setting speed 
MOUSE_SP _SET1 = JOY2 setting speed 

MOUSE_SPO = Joy1 Mouse speed 
(O=slow, 1 =medium, 2=fast, $80=error code) 

MOUSE_SP1 = Joy2 Mouse speed 
(O=slow, 1 =medium, 2=fast, $80=error code) 

.************************************************************************************************** 

speed_change 
php 
sep #$30 

Ida mouse_con,x 
beq - s25 

Ida #$10 
sta regOh 

s10 -
Ida #$01 
sta $4016 
Ida $4016,x ; Speed change (1 step). 
stz $4016 

Ida #$01 ; Read speed data. 
sta $4016 ; Shift register clear. 
Ida #$00 
sta $4016 

4-7-13 



USING THE STANDARD BIOS 

I 

sta mouse_spO,x ; Speed register clear. 

Idy #10 ; Shift register read has no meaning. 
s20 -

Ida $4016,x 
dey 
bne s20 -

Ida $4016,x ; Read speed 
Isr a 
rol mouse_spO,x 

Ida $4016,x 

Isr a 
rol mouse_spO,x 
Ida mouse_spO,x 

cmp mouse_sp_setO,x ;Set speed or not? 
beq - s30 

dec regOh ; For error check 
bne s10 -

s25 -
Ida #$80 ; Speed change error. 
sta mouse_spO,x 

s30 -
pip 
rts 

db 'NINTENDO SNES MOUSE BIOS Ver1.00' ;do not delete. 

;If user modifies program, then change to 
;'MODIFIED FROM SNES MOUSE BIOS Ver1.00' 

db 'END OF MOUSE BIOS' ;do not delete. 

4-7-14 



SNES DEVELOPMENT MANUAL 

ChapterS Programming Cautions 
Programs should be written so that controller input can be used from the time the power 
is turned on until the menu screen appears. (From the demo screen until the actual start 
point). 

8.1 CAUTION #1 
The explanation given in Chapter 6 is based on data read by the Super NES con
trol deck. Note that the data sent by the Super NES Mouse is in negative logic, 
and is inverted inside the Super N ES control deck. (There is a bit inversion buffer 
after the Super NES controller connector.) 

8.2 CAUTION #2 
When not using the standard BIOS, constantly check the mouse connection code, 
not just at start up. Take precautions to prevent problems when changing from a 
mouse to another input device during a game. This will protect the software from 
data input through other input devices. When using the standard BIOS, the mouse 
connection code is automatically checked constantly. If the mouse is replaced by 
another input device, data will not be received at that time. 

This holds true for other input devices as well. If, when using a program requiring 
the standard controller, the programmer constantly checks that the connection 
code is "OOOOB", no errors will occur even if another input device is connected. 

8.3 CAUTION #3 
As mentioned earlier, the mouse speed and speed data are initially undetermined. 
When not using the standard BIOS, always switch the speed of the mouse once 
after connecting it. Otherwise, the speed data (SD1 0,SD11) and actual speed set
ting of the mouse may be different. (Although they might mismatch initially, after 
the speed is switched automatically or manually once, the speed data and speed 
setting are always in agreement.) The speed switching program should be execut
ed before any data is transmitted by the mouse. (If the mouse becomes discon
nected during a game, always run the speed switching program once immediately 
after re-connecting the mouse.) When using the standard BIOS, the speed switch
ing program is run automatically whenever the mouse is connected, and no addi
tional steps need be taken. 

8.4 CAUTION #4 
The standard BIOS, mouse_read, can be included in the program without modifi
cation and may be treated like a controller read routine. Call mouse_read as a 
subroutine. 

Note that the standard BIOS, mouse_read, is designed for mouse-only software. 
Take caution when using a standard controller and mouse at the same time. 

4-8-1 



PROGRAMMING CAUTIONS 

8.5 CAUTION #5 
The standard BIOS is written entirely in the eight-bit mode. Therefore, the com
mands php, pip and sep are executed after it is called and before returning to the 
main program. They may be removed when the eight-bit and sixteen bit modes 
are carefully managed. 

8.6 CAUTION #6 
Refer to "Mouse Specifications", for mouse characteristics such as tracking 
speed = 250 mm/sec., when writing any software. 

Note about the enclosed software: 

The disk contains sample software which uses the standard BIOS 
(MOUSE.COM). MOUSE.COM displays data on the screen transmitted by 
the mouse and stored in each register. The number strings shown at the 
bottom represent 32-bit mouse data strings. The cursor will follow the 
movement of the mouse horizontally or vertically on the screen. Move the 
cursor to the heart symbol and push the left mouse actuator to change the 
cursor tracking speed. 

4-8-2 



SNES DEVELOPMENT MANUAL 

Chapter 9 MultiPlayer 5 Specifications 

9.1 INTRODUCTION TO MULTIPLAYER 5 
The Super NES MultiPlayer 5 is a standard term referring to any controller or 
adapter used to accommodate 3 - 5 players. The adapter is connected to the Su
per NES control deck and allows up to five people to play at one time. The adapter 
references all controller data simultaneously, and does not give an unfair advan
tage to anyone controller during a game. The adapter's controller ports are identi
cal to the Super NES controller port. Therefore, many devices which can be 
connected to the controller port may also be connected to MultiPlayer 5. 

The adapter should be equipped with a switch which is user selectable between a 
2 player (2P) mode and a 5 player (5P) mode (for three to five players). When the 
adapter is in the 2P mode, the software treats MultiPlayer 5 controller port #2 as 
an extension of controller port #2 of the Super NES control deck. A BIOS is pro
vided on 3.5" diskette to read the multiple controller data input to MultiPlayer 5. 

This chapter describes how data is read from peripheral devices connected to 
MultiPlayer 5. For reliable operation, the supplied BIOS should always be used. 
Refer to the following chapter for details on the supplied BIOS. 

There are no standard entries that are required in manuals provided with games 
that use MultiPlayer 5. However, the manual should explain how to connect and 
operate MultiPlayer 5 when playing a multi-player game. A MultiPlayer 5 logo is 
available for use on packaging and advertising. The logo artwork may be obtained 
through the NOA Licensing Department. 

4-9-1 



MUL TIPLA YER 5 SPECIFICA TlONS 

9.2 HARDWARE CONNECTIONS 
The figure below demonstrates a typical hardware arrangement using the Super 
NES control deck and a MultiPlayer 5 device. 

ffi.., 
::j" ~ 
0 ... 

%~ ~ u 

M 
u 

~ 

I 
.., .. g; 

t D 82 

i e 
Super NES p 

v 
Control Deck I i 

~ 
a c ~ y ... e ffi .... a: 

2 
~ e ::j .... 

0 ... 
~a: 
!ZO r 80. 

S 

ffiN ® ::j .... 

~~ 
zO 

~ 80. 

Figure 4-9-1 MultiPlayer 5 Device Hardware Connections 

The MultiPlayer 5 device is connected to the Super NES control deck through 
controller port #2. The MultiPlayer 5 device should not be used with controller port 
#1 of the control deck. This should be carefully explained and addressed in all 
software and related manuals. 

4-9-2 



SNES DEVELOPMENT MANUAL 

9.3 MODES OF OPERATION 
Each MultiPlayer 5 device is equipped with a switch for changing between the 2P 
and 5P modes. The function of this switch is demonstrated in the table below. 

2 PLAYER MODE 5 PLAYER MODE 
PIN SYMBOL EXPANSION EXPANSION 

# CONNECTORS CONNECTORS 

® @I@I@ ® ® ® ® 

1 +5V X X X X X 

2 CUP X X X X X 

3 OUTO X X X X X 

4 DO X NC X X X X 

5 D1 X 
NC 

6 PP X 

7 GND X X X X X 

Adapter 
Connection NOT 
Status AVAILABLE AVAILABLE 
Detection 

X = Connected 
NC = Not Connected 

Table 4-9-1 MultiPlayer 5 Switch Function 

9.3.1 TWO PLAYER MODE 

In the 2P mode, only controller port #2 of the MultiPlayer 5 device can be 
used. In this mode, MultiPlayer 5 controller port #2 performs the same 
functions as controller port #2 of the Super NES control deck. 

9.3.2 FIVE PLAYER MODE 
In the 5P mode all connectors of the MultiPlayer 5 device can be used. This 
permits up to 5 players to playa game at one time (counting controller port 
#1 of the Super NES control deck). 

4-9-3 



MUL TIPLA YER 5 SPECIFIC A TlONS 

9.4 PROGRAMMING CAUTIONS FOR COMPATIBLE SOFTWARE 

9.4.1 CAUTION #1 
Games should be programmed to use the MultiPlayer 5 device only when 
the device is connected to controller port #2 of the Super NES control deck. 
Games should display the following warning message and the program 
should halt, when the MultiPlayer 5 device is connected to controller port 
#1 of the Super NES control deck and the MultiPlayer 5 is in the 5P mode. 

''The Super NES MultiPlayer 5 Adapter must be connected to 
Controller Socket #2." 

9.4.2 CAUTION #2 
Games should be programmed so that game play can be continued if the 
MultiPlayer 5 or one of the devices connected to it becomes disconnected. 

9.4.3 CAUTION #3 
The Super NES Super Scope can not be used with the MultiPlayer 5. The 
following error message should be displayed and the program should halt if 
the Super NES Super Scope is connected to the MultiPlayer 5 using the 5P 
mode. 

"The Super NES MultiPlayer 5 Adapter is not designed for use with' 
the Super NES Super Scope." 

9.4.4 CAUTION #4 
The Super NES Mouse can not be used with the MultiPlayer 5. The follow
ing error message should be displayed and the program should halt if the 
Super NES Mouse is connected to the MultiPlayer 5 using the 5P mode. 

"The Super NES MultiPlayer 5 Adapter is not designed for use with 
the Super NES Mouse." 

9.4.5 CAUTION #5 
Use the supplied BIOS whenever possible to ensure hardware and soft
ware compatibility. If a custom BIOS is used, read connector #2 and #3, 
followed by connector #4 and #5; because PP7 changes from a logic 0 to 1 
slowly. Refer to "Reading Data" on the following page. 

9.4.6 CAUTION #6 
Programs can not detect whether the MultiPlayer 5 is connected when the 
MultiPlayer 5 is in the 2P mode. 

9.4.7 CAUTION #7 
Software should be evaluated using the MultiPlayer Development Assem
bly prior to submission. This assembly may be obtained through the NOA 
Parts Department. Refer to "Super NES Parts List" in the "Supplemental In
formation" section of this manual. 

4-9-4 



SNES DEVELOPMENT MANUAL 

9.4.8 CAUTION #8 
When using the MultiPlayer 5 with the supplied BIOS, use caution in the or
der of the BIOS call (refer to "Supplied BIOS Execution" in the following 
chapter). 

9.5 READING DATA 

9.5.1 STANDARD CONTROLLER CONNECTED (5P MODE) 

When the MultiPlayer 5 is in the 5P mode, data from the four connected 
controllers is read in two groups; controllers 2 and 3, and controllers 4 and 
5. Data from each of these groups is read in parallel starting from <4017H> 
DO and 01. The bit at PP7 «4201 H> 07) is used to switch between the 
two groups. The normal condition of PP7 is 1. If changed to 0, it should be 
set back to 1 immediately. 

PP7 = 1 

PP7 = 0 

Read controller 2 data from <4017H> DO 
Read controller 3 data from <4017H> 01 
Read controller 4 data from <4017H> DO 
Read controller 5 data from <4017H> 01 

9.5.1.1 READ TIMING 

Read timing is demonstrated in the figure below. 

OUTO WR "1" n 
( writeto ) "O"~ I~~~~~~~~~~~~~~~~~~ 
4016H DO 

401700 RD 
(read) 

401701 RD 
(read) 

* Note 

L.--_----'I 
-----«controller 2 Dat~>--~--«controller 4 Dat~>-----

----«controller 3 Dat~>-----«controller 5 Dat~>-----
I I I I 

17 Bits 17 Bits 

Figure 4-9-2 MultiPlayer 5 Read Timing Chart, 5P Mode 

Note: The normal state outputs "1" to PP7. After reading Controller Data 4 
and 5, the state should be returned to "1". 

4-9-5 



1 

2 

3 

4 

5 

MUL TIPLA YER 5 SPECIFICATIONS 

9.5.1.2 DATA FORMAT 

The following table lists the MultiPlayer 5 data format when con
trollers are connected to connectors 2 through 5. An asterisk (*) is 
used to show that the indicated data is 0 when that controller is not 
connected. 

Output "I" in advance to PP7 «4201H> D7) 
Change OUTO «40 16H> DO) from "0" to "1" to "0" 

Content of <4017H> 

D7-D2 Dl DO 

<4017H> 1 st read undefined Controller 3 B button Controller 2 B button 

<4017H> 2nd read undefined Controller 3 Y button Controller 2 Y button 

<4017H> 3rd read undefined Controller 3 select button Controller 2 select button 

<4017H> 15th read undefined 0 0 
<4017H> 16th read undefined 0 0 
<4017H> 17th read undefined 1 (*) 1 (*) 

Change the output going to PP7 «4201 H> D7) from" 1" to "0" 

<4017H> 18th read undefined Controller 5 B button Controller 4 B button 

<4017H> 19th read undefined Controller 5 Y button Controller 4 Y button 

<4017H> 20th read undefined Controller 5 select button Controller 4 select button 

<4017H> 32nd read undefined 0 0 
<4017H> 33rd read undefined 0 0 
<4017H> 34th read undefined 1 (*) 1 (*) 

After controller data has been read, change the output to PP7 «4201 H> D7) from "0" to "1 " 

Table 4-9-2 MultiPlayer 5 Data Format 

4-9-6 



SNES DEVELOPMENT MANUAL 

9.5.2 PERIPHERAL DEVICE CONNECTIONS 
The MultiPlayer 5 connectors are identical in shape to the controller ports 
of the Super NES control deck. Peripheral devices other than controllers 
can be connected. However, some types of devices are not compatible 
with the MultiPlayer 5. 

9.5.2.1 INCOMPATIBLE DEVICES 

The following devices cannot be used with MultiPlayer 5 except for 
those devices marked with an asterisk (*), which can be used only 
when MultiPlayer 5 is in the 2P mode. If any of the devices marked 
with an asterisk (*) are used when MultiPlayer 5 is in the 5P mode, 
they either will not operate or may not operate normally. 

1*. Any device which uses <4016H> D1 or <4017H> D1 for its 
data read. 

2*. Any device which uses <4201 H> or <4213H>. 
3. Any device with an electrical consumption of 17mA or more 

per unit. 
4*. Any device which detects a CUP signal while OUT 0 is "1". 
5. Any device which transmits data while OUT 0 is "1". 
6. Any adapter used to connect other devices. 

Examples of devices which can not be used with MultiPlayer 5: 

Super NES mouse (for reason 3). 
Super NES Super Scope (for reason 2) 
MultiPlayer 5 (for reason 6) 

4-9-7 



MUL TIPLA YER 5 SPECIFICA TlONS 

9.5.2.2 DISSIMILAR DEVICES 

<4017H> DO RD 

<4017H> 01 RD 

PP7WR "1 " 
(write) "0" 

Dissimilar devices can be used simultaneously as long as anyone 
device is not contained in the previous incompatibility list. Differ
ences in data composition and length between the various devices 
will not result in any problems. An example of data read timing for 
dissimilar devices is provided below. 

Device A Data ~ I Device C Data I 

Device B Data I I Device 0 Data ~ 
I 

LJ I I 
DO (No Data) 01 (No Data) 

Device Physical Connections: 

Figure 4-9-3 

Device A = Connector 2 
Device B = Connector 3 

Device C = Connector 4 
Device 0 = Connector 5 

Data Read Timing for Dissimilar Devices 

When the data length between two devices that are read in parallel 
is different, the excess part (shaded) is read in with no data. The 
above setting is only one example and all four devices do not need 
to be connected. 

4-9-8 



SNES DEVELOPMENT MANUAL 

9.6 IDENTIFYING DEVICES CONNECTED TO MULTIPLAYER 5 

9.6.1 SIGNATURES 
Nintendo has a standard for each "signature" which allows software to de
tect the type of device connected. Software uses the signature to select the 
appropriate operations mode and menu for the connected device and to in
hibit data from being read from incompatible devices. 
The peripheral device signature is contained in bits 13 - 16 of the OUT 0 
latch pulse «4016H> DO WR) when read serially from <4016H> DO 
«4017H> ~O). Refer to the chapter "CPU Registers" in book 1 for more in
formation concerning these registers. 
The signature for a standard controller is 0000. Refer to device program
ming documentation for the signature of other devices. 

9.6.2 MULTIPLAVER 5 SIGNATURE 
MultiPlayer 5 simply passes on the signature codes for devices connected 
to controller ports 2 - 5 and does not have a signature code of its own. 
However, the following procedure will verify that MultiPlayer 5 is connect
ed. When performing this procedure, it does not matter whether or not a 
device is connected to MultiPlayer 5 controller ports 2 - 5. 

1. Output "1" to register <4016H> DO. 
2. Read register <4017H> 01 eight times and verify that it is 

"11111111 (FFH)". 
3. Output "0" to register <4016H> DO. 
4. Read register <4017H> 01 eight times and verify that it is not 

"11111111 (FFH)". 

If items 1-4 are all satisfied, MultiPlayer 5 is connected to controller port #2 
of the Super NES control deck and the 2P/5P mode switch is in the 5P 
mode. The Super NES cannot detect if MultiPlayer 5 is connected when 
MultiPlayer 5 is in the 2P mode. To verify that MultiPlayer 5 is connected to 
controller port #1 of the Super NES control deck, complete the same test 
procedure using register <4016H> 01. 

4-9-9 



+:;. 

-P 
o 

SUPER NES MultiPlayer 5 - SCHEMATIC DIAGRAM (Rev 2.3) May 1, 1992 

HCT126 

~ UTO I-----II-----=-------+----H 

~ ~8Q HCT126 X 

~ ? 
mG~D 
7P PLUG 

HCT126 

lQK_>t4f 
I I 
I I 
I I 

I 
r 

CT241 

B~o ~ 
Z1 ~ ~ 
ZO 5P ~ 

D (l) 

;>1 OK 
I\. 

~ 
,~ 

5P -- ~ 
,,~ J 

HCT241 

J 2PO/ 

H,HCT241 

J.-

J 

CD 
~ 

3: 
c: 
~ 
""CJ 
r-
?< m 
::tJ 
en 
en 
o 
:::E: 
m s: 
~ 
o 
c 
:; 
C) 
::tJ 
:t> s: 

~ 
~ 
:::! 

~ 
~ 
lJ 
01 
C/) 

~ 
!! 
~ 
:::! 

~ 



SNES DEVELOPMENT MANUAL 

9.8 READING CONTROLLER DATA 
In order to understand the process by which MultiPlayer 5 data is read, the user 
must first understand the method by which normal controller data is read. This 
method is described in the following paragraphs. 

9.8.1 CONTROLLER DATA STORAGE 

Controller data is stored at <4218H> - <421 BH> in the Super NES CPU. 
This data, originally transmitted in serial form by the controller, has been 
automatically expanded by the CPU internal hardware. The controller auto
matic read function operates during the PPU V-blank period. Therefore, the 
controller status for the previous V-blank is stored at <4218H> - <421 BH>. 
Refer to "Joy Controller" in the "Software" section of this manual. 

Note: Super NES CPU registers <421 CH> - <421 FH> are provided for 
expansion of controller data storage. However, no data is stored in 
this area by MultiPlayer 5 and data held by these registers is ig
nored. 

In addition to reading controller and other external device data automatical
ly, the Super NES can read data serially using software. Data can also be 
read using a combination of the automatic read function (up to16 bits) and 
software (from the 17th bit). 

4-9-11 



MUL TIPLA YER 5 SPECIFICA TlONS 

9.8.2 CONTROLLER 1/0 PORTS 
There are four Super NES liD ports used for reading controller (or periph
eral device) data in serial format. 

9.8.2.1 REGISTER <4016H> (00, 01 REAO) 

Bits 00 and 01 of this register read peripheral devices connected 
to controller port #1 of the Super NES control deck. 

9.8.2.2 REGISTER <4017H> (00,01 REAO) 

Bits 00 and 01 of this register read peripheral devices connected 
to controller port #2 of the Super NES control deck. 

9.8.2.3 REGISTER <4016H> (00 WRITE) 

This is the controller shift registers' parallel load control. 

9.8.2.4 REGISTER <4201 H> (06, 07 WRITE) 

Bit 06 enables serial output for controller port #1 and bit 07 en
ables serial output for controller port #2. 

9.8.2.5 REGISTER <4213h> (06, 07 REAO) 

Bits 06 and 07 read inputs from the parallel liD ports. 

Only specially designed devices allow data input from registers <4016H> 
bit 01 and <4017H> bit 01. When a controller is used by itself (directly con
nected to the Super NES), this data is undefined. 

The following figure demonstrates a valid controller data string. The shad
ed area indicates data that is automatically read. 

S016 S017 S018 S019 S020 S021 S022 S023 

1 
NOT USEO 

Figure 4-9-4 Valid Controller Oata String 

4-9-12 



SNES DEVELOPMENT MANUAL 

The data for each button is transmitted as "1" when pressed and "0" when 
not pressed. The S016 data bit is used to verify a controller is connected. A 
controller is connected to the port when the signature code is 0000 and 
S016 = 1. When the controller is not connected, the signature code is 0000 
and S016 = O. 

4-9-13 



MUL TlPLA YER 5 SUPPLIED BIOS 

Chapter 10 MultiPlayer 5 Supplied BIOS 
Super NES hardware and any MultiPlayer 5 program which does not use the supplied 
BIOS may not be fully compatible. (When any minor hardware changes are made in the 
future, maintaining the compatibility at the BIOS level will have the first priority.) 

The enclosed diskette includes the following two files, which compose the BIOS pro
gram. 

• M_CHECK.X65, Version X.XX 

• MUL TI5.X65, Version X.XX 

10.1 FILE DESCRIPTION 
The file "M_CHECK.X65" determines whether a MultiPlayer 5 device is connected 
to the Super NES. The file "MULTI5.X65" reads controller data for 5 players. The 
diskette contains the following 8 files. These files were written using the Super 
NES Emulator development system. 

10.1.1 BIOS FILES 

• MULTI5. X65 
• M_CHECK. X65 

10.1.2 SAMPLE PROGRAM FILES 

• TEST. X65 
• INIT. X65 
• FONT. X65 
• MAKE. BAT 
• TEST. ISX 
• TEST.COM 

10.2 SAMPLE PROGRAM EXECUTION 
The enclosed disk also contains a sample program for checking MultiPlayer 5 op
erations. Using the MAKE file on the enclosed disk, run the program using the Su
per NES Emulator development tool or the EPROM evaluation board (1 Mbit or 
larger capacity). 

10.2.1 OPERATION PARAMETERS 
Assign the following parameters when running the sample program. 

Memory map mode: 20 mode 
Memory bank to be used: Bank 00, 80H 
Use the high speed mode: (3.58 MHz) 

4-10-1 



SNES DEVELOPMENT MANUAL 

10.2.2 SAMPLE PROGRAM UTILIZATION 

When power is applied, the program displays the button engagement sta
tus of the connected controller(s). The program displays a different num
ber of controllers depending on whether the MultiPlayer 5 is in the 5P 
mode or the 2P mode. Button names are not displayed when a controller 
is not connected. An error message is displayed when the adapter is con
nected to controller port #1 of the Super NES control deck. 
The program proceeds through the following display format when the Su
per NES reset button is pressed. 

Button Status Display 
(Standard Speed Mode) 

Reset 

Software Register Display 
(Standard Speed Mode) 

Reset 

Button Status Display 
(High Speed Mode) 

Reset 

Software Register Display 
(High Speed Mode) 

Reset 

Figure 4-10-1 Sample Program Display Format 

10.3 SUPPLIED BIOS EXECUTION 
The supplied BIOS program assumes it is running in synchronization with the Su
per NES PPU's NMI interrupt. The program uses the Super NES CPU controller 
data automatic read function, so the automatic read function must be enabled 
when the BIOS is called «4200H> 00= 1 ). 

The data for 5 controllers is read when the BIOS is called with the automatic read 
function enabled. Since the supplied BIOS uses the automatic read function, the 
BIOS can not be called more than once per frame (the period from one automatic 
read to the next automatic read). 

4-10-2 



MUL TIPLA YER 5 SUPPLIED BIOS 

In this BIOS, the OUTO signal is controlled by the Controller Automatic Read 
function. The user must ensure that the BIOS is called in the proper order. After 
the Super NES CPU Automatic Read period (215 Jls from the start of NMI), call 
"MUL TI5.ASM (X65)" followed by ""M_CHECK.ASM (X65)". The BIOS must be 
called in this order for proper operation. 

10.4 SUPPLIED BIOS OUTPUT REGISTER 
M_CHECK.X65 

status 
(a-bit) 

MULTI5.X65 

con5 
(16-bit) 

D7 D6 D5 D4 D3 D2 D1 DO 

Super NES Controller Port 2 MultiPlayer 5 
"---- Connected = 1 

Not connected = 0 

Super NES Controller Port1 MultiPlayer 5 
'------- Connected = 1 

Not connected = 0 

D15 D14 D13 D12 D11 D10 D9 D8 

I B I y I 5E I 5T I UP I DN I LT I RT I 
D7 D6 D5 D4 D3 D2 D1 DO 

A I x I L I Rio I 0 I 0 I 0 I 
Controller 5 Button Information 

The same format is used for con4-con1 (16 bits each). 
con 4 = Controller 4 
con 3 = Controller 3 
con 2 = Controller 2 
con 1 = Controller 1 (Super NES controller port #1) 

D7 D6 D5 D4 D3 D2 D 1 DO 

sgn5 1/17171 
(a-bit) V V V I 

DO is xxxOOOOO when no device is connected to the Super NES controller port. DO 
is xxx00001 when a controller is connected. DO is undefined for all other devices. 

4-10-3 



SNES DEVELOPMENT MANUAL 

The same format is used for sgn4-sgn1 (8 bits each). 
sgn 4: Connector 4 
sgn 3: Connector 3 
sgn 2: Connector 2 
sgn 1: Connector 1 (Super NES controller port #1) 

10.5 SUPPLIED BIOS CAUTIONS 

10.5.1 CAUTION #1 

MUL TIS.X6S reads data under the assumption that MultiPlayer S is in the 
SP mode with all 4 controllers connected and that a controller is connect
er to controller port #1 of the Super NES control deck. Therefore, if Multi
Player 5 is not connected or a device other than a controller is connected, 
the contents of con1-5 are invalid. Refer to status obtained by 
M_CHECK.X65 and data in sgn1-5 to check the status of device connec
tions. 

10.5.2 CAUTION #2 

Since the supplied BIOS uses the automatic read function, the BIOS can 
not be called more than once per frame (the period from one automatic 
read to the next automatic read). Do not overlap the execution of the 
BIOS with the automatic read execution period (about 215 Jls from the 
start of the NMI). Refer to the chapter "Joy Controller" under "Software" in 
this manual. 

10.5.3 CAUTION #3 

Nintendo does not assume responsibility for any problems which arise 
from using all or part of this BIOS. Developers should use the BIOS only 
after fully understanding its operations and usage. 

10.5.4 CAUTION #4 

Change the BIOS end code, at the end of the BIOS, when partial chang
es are made to the BIOS. This is demonstrated below. 

• M_CHECK.X65 
"NINTENDO SHVC MUL TIS CONNECT CHECK Ver X.XX" 
=>"MODIFIED FROM SHVC MUL TI5 CONNECT CHECK Ver X.XX" 

• MUL T15.X65 
"NINTENDO SHVC MUL TI5 BIOS Ver X.XX" 
=> "MODIFIED FROM SHVC MUL TI5 BIOS Ver X.XX" 

4-10-4 



MUL TlPLA YER 5 SUPPLIED BIOS 

10.5.5 CAUTION #5 

When consecutively calling "MUL TI5.ASM (X65)" AND "M_CHECK.ASM 
(X65)" I the user must call "MUL TI5.ASM (X65)" first to ensure the expect
ed results. 

4-10-5 



SNES DEVELOPMENT MANUAL 

10.6 MULTIPLAYER 5 SUPPLIED BIOS PROGRAM LISTINGS 
The following are program listings contained on the MultiPlayer 5 Supplied BIOS 
diskette. These programs are in the I.S. assembler format. 
[M_CHECK.X65] 

ON816 
PUBALL 
ASSUME 0,0 

MEM16 macro 

MEM8 

IDX16 

IDX8 

ON16A 
endm 
macro 
OFF16A 
endm 
macro 
ON161 
endm 
macro 
OFF161 
endm 

.************************************************************************************ , 

.************************************************************************************ 

MultiPlayer connection check routine ver x.xx 
Date 
© 199x Nintendo 

.************************************************************************************ , 

.************************************************************************************ 

BANK80 GROUP 080H 
;============================================================ 

MultiPlayer connection check BIOS start code 
Please do not delete this code 

;============================================================ 
DB 'START OF MUL TI5 CONNECT CHECK' 

;============================================================ 
RAM define table 

;============================================================ 
BANKEOU GROUP 0 

EXTERN 
EXTERN 

EOU 
EOU 

status 
regOI,regOh,reg11,reg1 h 

4016H 
4017H 

4-10-6 



MUL T/PLA YER 5 SUPPLIED BIOS 

BANK80 GROUP 080H 

.************************************************************************************ 
I 

MultiPlayer connection check ver x.xx I 

.************************************************************************************ 
I 

; (Caution) 
; Contents of register A, B, X, Y will be destroyed after this routine. 

check_mpa 
PHP 
IOX8 
MEM8 
SEP 
STZ 

#30H 
.status 

;<automatic controller read enabled?> 
_cOO 

LOA 4212H 
AND #01H 
BNE _cOO 

;<determine if MPA is connected or not?> 
STZ c_ad1 ;output "0" to outO 
LOA #01H 
STA c_ad1 ;output "1" to outO 
LOX #08H 

c10 -
LOA c_ad1 
LSR A 
LSR A 
ROL .regOh ;read d1 of 4016h and store it to regOh 
LOA c_ad2 
LSR A 
LSR A 
ROL .reg1 h ;read d1 of 4017h and store it to reg1 h 
OEX 
BNE c10 -

STZ c_ad1 ; output 0 to outO 
LOX #08H 

c20 -
LOA c_ad1 
LSR A 
LSR A 
ROL .regOI ;read d1 of 4016h and store it to regOI 
LOA c_ad2 

4-10-7 



SNES DEVELOPMENT MANUAL 

LSR 
LSR 
ROL 
DEX 
BNE 

A 
A 
.reg11 ;read d1 of 4017h and store it to reg11 

;<determine if special device or MPA is connected?> 

;<Check controller port1 > 
LDA .regOh 
CMP #OFFH 
BNE _c30 

LDA 
CMP 
BEQ 

.regOI 
#OFFH 
_C30 

LDA #80H 
STA .status 

;Is regOh=$FF? 
; YES->determine if MPA or special device 
; NO->branch, check connection on port2 

; Is regOI=$FF? 
; YES->special device connected to port1 , jmp 
; NO->MPA connected to port1 , set status 

;<Check controller port2> 
_c30 

LDA .reg1 h 
CMP #OFFH ;Is reg1 h=$FF? 
BNE - c40 ; YES->deterrT1ine if MPA or special device 

; NO->branch and return from routine 
LDA .reg11 
CMP #OFFH ;Is reg11=$FF? 
BEQ - c40 ; YES->special device connected to port2, rts 

; NO->MPA connected to port2, set status 
LDA #40H 
ORA .status 
STA .status 

c40 -
PLP 
RTS 

;============================================================ 
MultiPlayer connection check routine version x.xx 
(Caution) 
When this routine is used as is, please don't delete this code. 
If this routine is modified, please use the following code instead 
'MODIFIED FROM SHVC MUL TI5 CONNECT CHECK VER x.xx' 

.******************************************************************************************* , 
DB 'NINTENDO SHVC MUL TI5 CONNECT CHECK Ver1.00' 

4-10-8 



MUL TIPLA YER 5 SUPPLIED B/OS 

.******************************************************************************************* 

MultiPlayer BIOS end code 
Please do not delete this code , 

.******************************************************************************************* 

DB 'END OF MUL TIS CONNECT CHECK' 

END 

4-10-9 



SNES DEVELOPMENT MANUAL 

I 

[MUL TI5.X65] 
ON816 
PUBALL 
ASSUME 0,0 

MEM16 macro 
ON16A 
endm 

MEM8 macro 
OFF16A 
endm 

IDX16 macro 
ON161 
endm 

IDX8 macro 
OFF161 
endm 

.************************************************************************************ , 

.************************************************************************************ 

MultiPlayer driver routine ver x.xx 
Date 
© 199x Nintendo , 

.*******************************************************~*************************** , 

.************************************************************************************ 

; (Caution) 
; 1. Enable controller automatic read when read_mpa routine is used. 
; 2. This BIOS is for the standard controller only. 
; 3. This BIOS is called once every frame. 

BANK80 GROUP 080H 

;============================================================ 
MultiPlayer BIOS start code 
Please do not delete this code 

;============================================================ 
DB 'START OF MUL TI5 BIOS' 

;============================================================ 
RAM define table 

;============================================================ 
BANKEQU GROUP 0 

ORG 0010H 

status DS 1 ; status of device connection 

con5 DS 2 ;status of controller #5 (MPA #4) 

4-10-10 



MUL TIPLA YER 5 SUPPLIED BIOS 

con4 OS 2 ;status of controller #4 (MPA #3) 
con3 OS 2 ;status of controller #3 (MPA #2) 
con2 OS 2 ;status of controller #2 (MPA #1) 
con1 OS 2 ;status of controller #1 (front connector #1 ) 

sgn5 OS 1 ;signature of controller #5 (MPA #4) 
sgn4 OS 1 ;signature of controller #4 (MPA #3) 
sgn3 OS 1 ;signature of controller #3 (MPA #2) 
sgn2 OS 1 ;signature of controller #2 (MPA #1) 
sgn1 OS 1 ;signature of controller #1 (front connector #1) 

regOI OS 1 ; Work register 
regOh OS 1 ; Work register 
reg11 OS 1 ; Work register 
reg1h OS 1 ; Work register 

c_ad1 EQU 4016H 
c_ad2 EQU 4017H 

BANK80 GROUP 080H 

.************************************************************************************ , 
; (Caution) 
; Contents of register A, B, X, Y will be destroyed after this routine. 

read_mpa 
PHP 
IOX8 
MEM8 
SEP 
STZ 

#30H 
<status 

;<automatic read of controller data enable?> 
10 

LOA 4212H 
ANO #01H 
BNE 10 

;<store data of controller #1 > 
LOA 4219H 
STA con1+1 
LOA 4218H 
STA con1 ;store data of controller #1 to con1 (1 byte) 
ANO #OFH 
STA sgn1 
LOA c_ad1 

4-10-11 

I 



SNES DEVELOPMENT MANUAL 

LSR 
ROL 

A 
sgn1 ;store signature of controller #1 to sgn 1 

;<store data of controller #2 and #3> 
LDA 421BH 
STA con2+1 
LDA 421AH 
ST A con2 ;store data of controller #2 to con2 
AND #OFH 
STA sgn2 
LDA 421FH 
STA con3+1 
LDA 421EH 
ST A con3 ;store data of controller #3 to con3 
AND #OFH 
STA sgn3 
LDA c_ad2 
LSR A 
ROL sgn2 ;store signature of controller #2 to sgn2 
LSR A 
ROL sgn3 ;store signature of controller #3 to sgn3 

;<output "0" to PP7> 
LDA #7FH 
STA 4201H 

;<read and store data of controller #4 and #5> 
LDY #10H 

LDA c_ad2 
MEM16 
REP #20H 
LSR A 
ROL con4 ;store data of controller #4 to con4 
LSR A 
ROL con5 ;store data of controller #5 to con5 
MEM8 
SEP #20H 
DEY 
BNE _20 
LDA con4 
AND #OFH 
STA sgn4 
LDA con5 
AND #OFH 
STA sgn5 

4-10-12 



MUL TIPLA YER 5 SUPPLIED BIOS 

LDA 
LSR 
ROL 
LSR 
ROL 

c_ad2 
A 
sgn4 
A 
sgn5 

;store signature of controller #4 to sgn4 

;< output "1" to PP7> 
LDA 
STA 

PLP 
RTS 

#OFFH 
4201H 

;store signature of controller #5 to sgn5 

;============================================================ 
MultiPlayer driver routine ver x.xx 
(Caution) 
When this routine is used as is, please don't delete this code. 
If this routine is modified, please use the following code instead. 
'MODIFIED FROM SHVC MUL TI5 BIOS Ver x.xx' 

, 
.******************************************************************************************* 

DB 'NINTENDO SHVC MUL TI5 BIOS Ver x.xx' 

.******************************************************************************************* 

MultiPlayer BIOS end code 
Please do not delete this code 

.******************************************************************************************* 

DB 'END OF MUL TI5 BIOS' 

END 

4-10-13 



SNES DEVELOPMENT MANUAL 

10.7 MULTIPLAYER DEVELOPMENT ASSEMBLY 
Nintendo has created a breadboard for evaluation of MultiPlayer 5 programs. This 
breadboard is manufactured according to the standard MultiPlayer 5 circuit speci
fications and is the standard evaluation tool for MultiPlayer 5 programs. All master 
programs should be tested using this device prior to submission for approval. 

Nintendo also uses this breadboard to test for proper operation as part of lot 
checks. 

If the breadboard is desired for program development, contact the NOA Parts De
partment at (800) 531-4048. Ask for the MultiPlayer Development Assembly. 

4-10-14 



SUPER NES PARTS LIST 

Chapter 1. Super NES Parts List 
'. "'>:\W'i':;:>}(\ii.:'··' ". 

,.[)~$criptiori Remarks ii 

.~~< «:/».: ••... : ..... , 

22945 Control Deck (SNS) 
21712 Control Deck (SFX) 
25306 GPK Super Mario World (SNS) 
21713 GPK Super Mario World (SFX) 
23089 Cable AV (Stereo) - (ACC) 
21715 AC Adapter (SFX) 
21716 Cable RGB 
23090 Cable S-VHS (ACC) 
22424 Cable AV Mono 
21943 IC 0411 CIC 
25100 IC 0413 CIC (PAL) 
21326 RAM S-WRAM 1 M SNS/SHVC Custom 
22423 Fuse 1.5A 
22939 Housing GPK Front (SNS) 
22940 Housing GPK Back (SNS) 
21940 Housing GPK Front (SFX) 
21941 Housing GPK Back (SFX) 
7879 Screw GPK M2x5.9 
22536 PCB SHVC-1 AON (bare) 
22537 PCB SHVC-1 A 1 B (bare) 
22538 PCB SHVC-1 A3B (bare) 
22539 PCB SHVC-1 A5B (bare) 
22540 PCB SHVC-1 BON (bare) 
24468 PCB SHVC-1 B5B (bare) 
26424 PCB SHVC-1 K1 B (bare) (Super Mario Kart) 
27441 PCB SHVC- 4PV5B Evaluation Kit 25 PCBs 
28761 PCB SHVC- 2P3B Evaluation Kit 25 PCBs 
22427 PCB Assy SHVC- 2P3B 
21945 PCB Assy SHVC- 1 PON 
24470 PCB Assy SHVC- 205B 
25474 PCB Assy SHVC-4PV5B 
26011 PCB Assy SHVC-20W5B 
28626 PCB Assy SHVC-8PV5B 
28760 PCB Assy SHVC-40W5B 
28625 PCB Assy SHVC-1 RA3B6S 
33366 PCB Assy SHVC-4PV7B 
32321 PCB Assy SHVC-8X7B 
22410 Multi Checker SFX 
27124 Multi Checker (20/21 Modes) 
22742 EPROM 64K MBM27C64 Fujitsu (blank) 
22743 EPROM 128K MBM27C 128 Fujitsu (blank) 
22744 EPROM 266K MBM27C256 Fujitsu (blank) 
22745 EPROM 512K MBM27C512 Fujitsu (blank) 
22746 EPROM 1 M NH27C101 Hitachi (blank) 
22748 EPROM 2M FUJITSU MBM 27C2001 (blank) 
22749 EPROM 4M TC574000D Toshiba (blank) 

FOR PARTS ORDERS CALL: 1-800-531-4048 



SNES DEVELOPMENT MANUAL 

iRj~1 
,,'. \ 

Description <.:, Remarks . .. , .... 

i))· i, . .:,.,· .. '.' 

21283 Connector Expansion 28 Pin Male (SFX) 
22771 Connector Expansion 28 Pin Female 
26882 Super NES Emulator-SE 
21321 IC RF5A22 CPU SHVC 
21322 IC RF5C77 PPU1 SHVC 
21323 IC RF5C78 PPU2 SHVC 
22943 DSP1 
23367 RAM 16K - S, Low Power Small 
23884 RAM 64K - S, Low Power Large 
23368 RAM 256K - S, Low Power Large 
27448 Multiplayer Development Assy 
25715 RAM, TC551001 PL-85 (Emulator Upgrade) 
24966 Super NES Development Manual, Book 1 
27457 Super NES Development Manual, Book 2 

2 



INDEX (Book I) 

A 

Absolute Addressing 1-17-4 
Absolute Multiplication 1-15-1 
Addition/Subtraction Screen 1-7-1 
ADSR Mode 2-7-3 
Audio Processing Unit 1-22-1 

B 

BG Mode 1-3-1, 1-27-3 
Bit Rate Reduction 2-2-1 
Brightness 1-27-1 
BRR 2-2-1,2-7-9 
BRR Filter 2-2-1,2-2-2 
BRR Filter Number 2-2-1 
BRR Format 2-2-1 
BRR Range 2-2-1,2-2-2 

C 

CG-RAM 1-8-1, 1-27-11 
Channels 1-17-1 
Clock Speed 1-21-1 
Color Constant 1-7-2 
Color Constant Addition/Subtraction 1-7-5, 
1-9-1 
Color Generator RAM 1-22-2 
Colors 1-2-1 
Controller 1-13-1, 1-14-1 
CPU Clock 1-21-1 

D 

Data Bank Register 3-3-2, 3-4-5, 3-4-8 
Data Transfer 1-17-1 
Direct Page Flag 2-8-7 
Direct Register 3-4-8 
Direct Select 1-27 -16 
Division 1-15-1 
DMA 1-13-1, 1-17-1 
DMA, General Purpose 1-13-1, 1-17-1 

E 

Echo Delay 2-7-9 
Echo Enable 2-7-8 
Echo Feed-Back 2-7-9 
Echo Filter Coefficients 2-7-1 
Echo Start Address 2-7-9 
Emulation Mode 3-1-1, 3-2-1 
Expanded Connector 1-13-1 
ExtBG Mode 1-5-1,1-27-19 
External Latch Flag 1-27-22, 4-1-3 
External Synchronization 1-27-19 

F 

Fixed Color Addition 1-6-1 

G 

Gain Mode 2-7-3 

H 

H-Blank 1-17-4 
H-DMA 1-6-1,1-12-1,1-17-1 
Horizontal Blanking 1-1-2 

I 

Indirect Addressing 1-17-4 
Interface 1-14-1 
Interlace 1-1-1, 1-1-2, 1-18-1 
Interrupt 1-16-1 
IPL ROM 2-1-1 

J 

Joy Controller Enable 1-28-1 

M 

Main Screen 1-7-1, 1-7-5 
Mode 20 1-21-3 
Mode 21 1-21-4 
Mosaic 1-4-1, 1-27-3 
Multiplication 1-27-20 

(1 of 7) 

INDEX 



N 

Native Mode 3-2-1 
NMII-13-1 

o 
OAM Priority Rotation 1-27-2 
Object Attribute Memory 1-22-2, 1-27-2 
Object Size 1-27-1 

p 

Pallets 1-2-1 
Priority 1-2-1 
Priority Order 1-20-2 
Processor Status Register 3-9-2 
Programmable 110 Port 1-14-1, 1-28-1 
Program Bank Register 3-3-3, 3-4-7 
Program Counter 3-3-3 
Program Status Word 2-8-6 

R 

Resolution 1-3-1, 1-18-1 

S 

Screen Addition/Subtraction 1-6-1, 1-7-5, 
1-9-1 
Screen Repetition 1-27-4 
Scroll 1-12-1 
Scroll, Vertical Partial 1-12-1 
Sony SPC700 2-8-1 
Stack Pointer 3-3-3 
Sub Screen 1-7-1, 1-7-5 
Synchronization 1-16-1 

T 

Timer 1-16-1 
Timer Enable 1-28-1 
Transparency 1-7-2 
Two's Complement 1-10-1 

V 

Vertical Blanking 1-1-2 

W 

Window 1-6-1, 1-12-1, 1-27-12 
Window Logic 1-27-13 

INDEX 

(2 of 7) 



COMMANDSIINSTRUCTIONS 

ADC Rn 2-2-6, 2-9-3 
ADC #n 2-2-6, 2-9-4 
ADD Rn 2-2-6, 2-9-5 
ADD #n 2-2-6, 2-9-6 
AL T 1 2-2-8, 2-9-7 
ALT2 2-2-8, 2-9-8 
ALT3 2-2-8, 2-9-9 
AND Rn 2-2-7,2-9-10 
AND #n 2-2-7, 2-9-11 
ASR 2-2-7,2-9-12 
ATTITUDE 3-5-22 
BCC e 2-2-7, 2-9-14 
BCS e 2-2-7,2-9-16 
BEQ e 2-2-7,2-9-18 
BGE e 2-2-7, 2-9-20 
BIC Rn 2-2-7, 2-9-22 
BIC #n 2-2-7,2-9-23 
BLT e 2-2-7, 2-9-24 
BMI e 2-2-7, 2-9-26 
BNE e 2-2-7, 2-9-28 
BPL e 2-2-7, 2-9-30 
BRA e 2-2-7, 2-9-32 
BVC e 2-2-7, 2-9-34 
BVS e 2-2-7, 2-9-36 
CACHE 2-2-8, 2-9-38 
CMODE 2-2-7,2-9-39 
CMP Rn 2-2-6, 2-9-41 
COLOR 2-2-7,2-9-42 
DEC Rn 2-2-6, 2-9-43 
DISTANCE 3-5-7 
DIV2 2-2-6, 2-9-44 
FMULT 2-2-6, 2-9-46 
FROM Rn 2-2-8, 2-9-48 
GETB 2-2-6,2-9-49 
GETBH 2-2-6,2-9-51 
GETBL 2-2-6,2-9-53 
GETBS 2-2-6, 2-9-55 
GETC 2-2-6, 2-9-57 
GYRATE 3-5-31 
HIB 2-2-7, 2-9-58 
IBT Rn, #pp 2-2-6, 2-9-60 
INC Rn 2-2-6, 2-9-61 
INVERSE 3-5-2 

INDEX (Book II) 
IWT Rn, #xx 2-2-6, 2-9-62 
JMP Rn 2-2-7, 2-9-63 
LDB (Rn) 2-2-6, 2-9-64 
LDW (Rn) 2-2-6, 2-9-66 
LEA Rn, xx 2-2-8, 2-9-67 
LINK #n 2-2-7, 2-9-68 
LJMP Rn 2-2-7, 2-9-69 
LM Rn, (xx) 2-2-6, 2-9-70 
LMS Rn, (yy) 2-2-6, 2-9-71 
LMULT 2-2-6, 2-9-73 
LOB 2-2-7,2-9-75 
LOOP 2-2-7, 2-9-77 
LSR 2-2-7,2-9-78 
MERGE 2-2-7, 2-9-79 
MOVE Rn, Rn' 2-2-8,2-9-81 
MOVE Rn, #xx 2-2-8, 2-9-82 
MOVE Rn, (xx) 2-2-8, 2-9-83 
MOVE (xx), Rn 2-2-8, 2-9-85 
MOVEB Rn, (Rn') 2-2-8, 2-9-87 
MOVEB (Rn'), Rn 2-2-8, 2-9-88 
MOVES Rn, Rn' 2-2-8, 2-9-89 
MOVEW Rn,(Rn') 2-2-8, 2-9-90 
MOVEW (Rn'), Rn 2-2-8, 2-9-91 
MULT Rn 2-2-6, 2-9-93 
MULT #n 2-2-6, 2-9-94 
MULTIPLY 3-5-1 
NOP 2-2-8, 2-9-95 
NOT 2-2-7,2-9-96 
OBJECTIVE 3-5-25 
OR Rn 2-2-7, 2-9-97 
OR #n 2-2-7, 2-9-99 
PARAMETER 3-5-12 
PLOT 2-2-7,2-9-100 
POLAR 3-5-9 
PROJECT 3-5-18 
RADIUS 3-5-4 
RAMB 2-2-7,2-9-101 
RANGE 3-5-6 
RASTER 3-5-15 
ROL 2-2-7, 2-9-102 
ROMB 2-2-7, 2-9-104 

(3 of 7) 

INDEX 



INDEX 

I 

Index (Continued) 

COMMANDSIINSTRUCTIONS (Continued) 

ROR 2-2-7, 2-9-105 
ROTATE 3-5-8 
RPIX 2-2-7,2-9-107 
SBC Rn 2-2-6, 2-9-108 
SBK 2-2-6,2-9-109 
SCALAR 3-5-29 
SEX 2-2-7, 2-9-110 
SM (xx), Rn 2-2-6, 2-9-112 
SMS (yy), Rn 2-2-6, 2-9-113 
STB(Rn) 2-2-6, 2-9-115 
STOP 2-2-8, 2-9-116 
STW (Rn) 2-2-6, 2-9-117 
SUB Rn 2-2-6, 2-9-118 
SUB #n 2-2-6, 2-9-119 
SUBJECTIVE 3-5-27 
SWAP 2-2-7, 2-9-120 
TARGET 3-5-20 
TO Rn 2-2-8, 2-9-121 
Triangle 3-5-3 
UMULT Rn 2-2-6, 2-9-122 
UMULT #n 2-2-6, 2-9-123 
WITH Rn 2-2-8, 2-9-124 
XOR Rn 2-2-7,2-9-125 
XOR #n 2-2-7, 2-9-126 

SUBJECT - Alpbebetical Listing 

A 

Accelerator Mode 1-5-6 
Access Modes 2-4-8, 2-5-2, 2-5-4, 2-6-1 
ADC #n 2-2-6, 2-9-4 
ADC Rn 2-2-6, 2-9-3 
ADD #n 2-2-6, 2-9-6 
ADD Rn 2-2-6, 2-9-5 
ALTI 2-2-8,2-9-7 
ALT2 2-2-8,2-9-8 
AL T3 2-2-8, 2-9-9 
AND #n 2-2-7, 2-9-11 
AND Rn 2-2-7,2-9-10 
ASR 2-2-7,2-9-12 
Attitude 2-5-10, 2-5-22, 2-5-24, 2-5-25, 

2-5-27, 2-5-28, 2-5-29, 2-5-31, 
2-5-32, 2-5-33 

Auto-increment Mode 1-8-3 

B 

Barrel Shift 1-8-4, 1-8-5 
BCC e 2-2-7,2-9-14 
BCS e 2-2-7,2-9-16 
BEQ e 2-2-7, 2-9-18 
BGE e 2-2-7,2-9-20 
BIC #n 2-2-7, 2-9-23 
BIC Rn 2-2-7,2-9-22 
Bitmap 1-8-14 
Bitmap Access 1-6-3 
Bitmap Emulation 1-8-1 
Bitmap Format 1-6-1 
BLT e 2-2-7, 2-9-24 
BMI e 2-2-7,2-9-26 
BNE e 2-2-7,2-9-28 
BPL e 2-2-7, 2-9-30 
BRA e 2-2-7,2-9-32 
Bulk Processing 2-7-4 
BVC e 2-2-7, 2-9-34 
BVS e 2-2-7, 2-9-36 
BW-RAM 1-1-1, 1-1-2, 1-1-3, 1-1-4, 1-2-2, 

1-2-4, 1-6-6 

(4 of 7) 



INDEX 

Index (Continued) 

C 

Cache 2-6-1, 2-8-4, 2-8-5, 2-8-6, 2-8-7, 2-9-38 
Cache RAM 2-6-1,2-6-2,2-8-8 
Character Conversion 1 1-6-1, 1-6-7, 1-6-8 
Character Conversion 2 1-6-2, 1-6-10, 1-6-11 
CMODE 2-8-1, 2-8-9, 2-8-11, 2-8-12, 2-9-39 
CMP Rn 2-9-41 
Color 2-8-1, 2-8-4, 2-8-6, 2-8-10, 2-8-11, 

2-8-12,2-8-13, 2-9-41, 2-9-42 
COLR 2-2-3, 2-2-5, 2-4-9, 2-8-4, 2-8-10, 

2-8-11,2-8-12,2-8-13 
Cumulative Arithmetic 1-1-2 
Cumulative Sum 1-7-1, 1-7-3 

D 

DEC Rn 2-2-6, 2-9-43 
Distance 3-5-4, 3-5-7 
Dither 2-4-9,2-8-9,2-8-10,2-8-11 
DIV2 2-2-6, 2-9-44 
Division 1-7-1, 1-7-2 
DMA 1-9-1 

E 

External Latch 4-1-4 
External Latch Flag 4-1-3 

F 

Fixed Mode 1-8-2 
FMULT 2-2-6, 2-4-1, 2-8-16, 2-8-17, 2-9-46 
FROM 2-6-4, 2-6-6, 2-6-7, 2-6-11, 2-7-1, 

2-7-2,2-7-3,2-7-4,2-8-10,2-8-11 
FROM Rn 2-2-8,2-9-48 

G 

GETB 2-2-6, 2-9-49 
GETBH 2-2-6, 2-9-51 
GETBL 2-2-6, 2-9-53 
GETBS 2-2-6,2-9-55 
GETC 2-2-6, 2-8-1, 2-8-4, 2-8-9, 2-8-12, 

2-8-13,2-9-57 
Gyrate 3-5-31 

H 

H Counter 4-1-4 
HIB 2-2-7, 2-9-58 
Horizontal Counter Latch 4-1-3 
HV Timer 1-1-2, 1-10-1 

I 

IBT Rn, #pp 2-2-6, 2-9-60 
INC Rn 2-2-6, 2-9-61 
Inverse 3-5-2 
I-RAM 1-1-1, 1-1-3, 1-1-4, 1-2-2, 1-2-5, 1-3-5 
IWT Rn, #xx 2-2-6, 2-9-62 

J 

JMP Rn 2-2-7, 2-4-3, 2-9-63 

L 

LDB (Rn) 2-2-7, 2-9-64 
LDW (Rn) 2-2-7, 2-9-66 
LEA Rn, xx 2-2-8, 2-9-67 
Linear Timer 1-10-1 
LINK #n 2-2-7, 2-9-68 
LJMP Rn 2-2-7, 2-9-69 
LM Rn, (xx) 2-2-7, 2-9-70 
LMS Rn, (yy) 2-2-7, 2-9-71 
LMULT 2-2-6, 2-4-1, 2-8-16, 2-8-17, 2-9-73 
LOB 2-2-7,2-9-75 
LOOP 2-2-7, 2-9-77 
LSR 2-2-7, 2-9-78 

(5 of 7) 



INDEX 

Index (Continued) 

M 

Masked Interrupt 1-5-3 
MERGE 2-2-7,2-9-79 
Message 1-5-3 
Mixed Processing Mode 1-5-8 
MOVE (xx), Rn 2-2-8,2-9-85 
MOVE Rn, #Xx 2-2-8, 2-9-82 
MOVE Rn, (xx) 2-2-8, 2-9-83 
MOVE Rn, Rn' 2-2-6,2-9-81 
MOVEB (Rn'), Rn 2-2-8, 2-9-88 
MOVEB Rn, (Rn') 2-2-8, 2-9-87 
MOVES Rn, Rn' 2-2-6,2-9-89 
MOVEW (Rn'), Rn 2-2-8,2-9-91 
MOVEW Rn,(Rn') 2-2-8, 2-9-90 
MULT #n 2-2-6, 2-8-16, 2-9-94 
MULT Rn 2-2-6, 2-8-16, 2-9-93 
Multiplication 1-7-1, 1-7-2 
Multiply 3-5-1 

N 

NOP 2-2-8, 2-6-2, 2-6-3, 2-6-4, 2-6-5, 2-6-7, 
2-6-9, 2-8-10, 2-9-95 

Normal Color 2-8-11 
Normal DMA 1-9-2 
NOT 2-2-8, 2-9-96 

o 
Objective 3-5-22, 3-5-25, 3-5-26 
OBJ Rotation 2-8-11 
OBJ Scaling 2-8-11 
OR #n 2-2-7,2-9-99 
OR Rn 2-2-7, 2-9-97 

p 

Parallel Processing Mode 1-5-7 
Parameter 3-3-1, 3-5-1 
Pipeline Processing 2-6-1, 2-6-3, 2-6-5 
Pixel Cache 2-8-4, 2-8-5, 2-8-6, 2-8-7, 2-8-9 
Plot 2-2-7, 2-4-1, 2-4-8, 2-4-9, 2-8-1,2-8-4,2-

8-5,2-8-6,2-8-7,2-8-8,2-8-9,2-8-10,2-
8-11,2-8-13,2-9-100 

Polar 3-5-9 
Project 3-5-10,3-5-12,3-5-13,3-5-14, 

3-5-15, 3-5-17, 3-5-18, 3-5-19, 
3-5-20, 3-5-28 

R 

Radius 3-5-3, 3-5-4, 3-5-6, 3-5-7, 3-5-30 
RAMB 2-2-7,2-4-6,2-7-3,2-9-101 
RAN 2-4-8, 2-5-2, 2-5-4, 2-6-1 
Range 3-5-6, 3-5-30 
Raster 3-2-1,3-5-12,3-5-13,3-5-15,3-5-16 
Register Prefix 2-6-6 
ROL 2-2-7,2-9-102 
ROMB 2-2-7, 2-4-5, 2-7-1, 2-9-104 
RON 2-4-8, 2-5-2, 2-5-4, 2-6-1 
ROR 2-2-7, 2-9-105 
Rotate 3-5-8, 3-5-23 
RPIX 2-2-7, 2-8-6,2-8-9,2-8-12,2-9-107 

(6 of 7) 



Index (Continued) 

S 

SBC Rn 2-2-6, 2-9-108 
SBK 2-2-6,2-9-109 
SBK Instruction 2-7-2, 2-7-4, 2-7-5 
Scalar 3-5-29 
SCR 2-8-14 
SEX 2-2-7, 2-9-110 
Shared Memory 1-5-4 
SM (xx), Rn 2-2-6, 2-9-112 
SMS (yy), Rn 2-2-6, 2-9-113 
Sprite Rotation 2-8-11 
Sprite Scaling 2-8-11 
STB(Rn) 2-2-6, 2-9-115 
STOP 2-2-8,2-9-116 
STW (Rn) 2-2-6, 2-9-117 
SUB #n 2-2-6, 2-9-119 
SUB Rn 2-2-6, 2-9-118 
Subjective 3-5-22, 3-5-27 
Super MMC 1-1-1, 1-3-3, 1-3-4 
SWAP 2-2-7,2-9-120 

T 

Target 3-5-17, 3-5-20, 3-5-21 
TO 2-6-2, 2-6-4, 2-6-6, 2-6-7 
TO Rn 2-2-8, 2-9-121 
Transparent 2-8-9, 2-8-10, 2-8-11, 2-8-13 
Triangle 3-5-3 

U 

UMULT #n 2-2-6, 2-8-16, 2-9-123 
UMULT Rn 2-2-6, 2-8-16, 2-9-122 

V 

V Counter 4-1-4 
Variable-length Data 1-8-1, 1-8-4 
Vector Switching 1-5-4 
Ve,rtical Counter Latch 4-1-3 
Virtual VRAM 1-1-2 

W 

WITH 2-6-4, 2-6-6, 2-6-7 
WITH Rn 2-2-8, 2-9-124 

X 

XOR #n 2-2-7, 2-9-126 
XOR Rn 2-2-7, 2-9-125 

(7 of 7) 

INDEX 


	Front Cover
	Table of Contents - Book II
	Section 1 - Super Accelerator (SA-1)
	Section 2 - Super FX
	Section 3 - DSP/DSP1
	Section 4 - Accessories
	Supplemental Information
	Index
	Bulletins

	List of Figures - Book II
	List of Tables - Book II
	Section 1 - Super Accelerator (SA-1)
	Chapter 1. Super Accelerator System Functions
	1.1 SA-1 Features
	1.1.1 CPU Core
	1.1.2 CPU Speed
	1.1.3 Internal RAM
	1.1.4 Common Memory Mapping
	1.1.5 Large-Capacity Memory
	1.1.6 Arithmetic Hardware
	1.1.7 Bit-Map Data Operations
	1.1.8 Variable-Length Bit Data Operations
	1.1.9 Custom DMA Circuit
	1.1.10 Timer Function
	1.1.11 Increased Level of Security

	1.2 System Configuration
	Figure 1-1-1 Super Accelerator System Configuration

	1.3 Bus Image Diagram
	Figure 1-1-2 SAS Bus Image


	Chapter 2. Configuration of SA-1
	2.1 SA-1 Functional Description
	Figure 1-2-1 SA-1 Block Diagram
	2.1.1 SA-1 CPU
	2.1.2 I-RAM
	2.1.3 Super MMC
	2.1.4 Internal Controller
	2.1.5 Arithmetic Circuit
	2.1.6 Character Conversion Circuit
	2.1.7 Variable-Length Bit Processing Circuit
	2.1.8 Timer Circuit
	2.1.9 DMA Circuit

	2.2 Memory Access
	2.2.1 Game Pak ROM Access
	2.2.1.1 Only SA-1 CPU Uses ROM
	2.2.1.2 Super NES CPU Accesses During SA-1 CPU Operations
	2.2.1.3 Both Processes Access ROM (2-Phase Access)

	2.2.2 BW-RAM Access
	2.2.2.1 Only SA-1 CPU Uses BW-RAM
	2.2.2.2 Super NES CPU Accesses BW-RAM During SA-1 CPU Operations
	2.2.2.3 Both Processors Access BW-RAM (2-Phase Access)

	2.2.3 SA-1 I-RAM Access
	2.2.3.1 Only the SA-1 CPU Accesses I-RAM
	2.2.3.2 Both SA-1 CPU and Super NES CPU Access I-RAM



	Chapter 3. Super Accelerator Memory Map
	3.1 Memory Map from Super NES CPU Perspective
	3.2 Memory Map from SA-1 CPU Perspective
	3.3 Super MMC
	3.3.1 ROM Bank Switching
	3.3.2 ROM Image Projection
	3.3.3 Backup RAM
	3.3.4 Protection of Backup Data
	3.3.5 Control Registers
	3.3.6 Cautions
	3.3.6.1 High Speed Modes
	3.3.6.2 ROM and Backup RAM Area
	3.3.6.3 Shared ROM Memory Map
	3.3.6.4 Backup RAM Protection
	3.3.6.5 SA-1 I-RAM Pre-Assigned


	3.4 Vectors and ROM-Registered Data

	Chapter 4. SA-1 Internal Register Configuration
	4.1 Explanation of Registers
	4.1.1 SA-1 CPU Control (CCNT)
	4.1.2 Super NES CPU Int Enable (SIE)
	4.1.3 Super NES CPU Int Clear (SIC)
	4.1.4 SA-1 CPU Reset Vector (CRV)
	4.1.5 SA-1 CPU NMI Vector (CNV)
	4.1.6 SA-1 CPU IRQ Vector (CIV)
	4.1.7 Super NES CPU Control (SCNT)
	4.1.8 SA-1 CPU Int Enable (CIE)
	4.1.9 SA-1 CPU Int Clear (CIC)
	4.1.10 Super NES CPU NMI Vector (SNV)
	4.1.11 Super NES CPU IRQ Vector (SIV)
	4.1.12 H/V Timer Control (TMC)
	4.1.13 SA-1 CPU Timer Restart (CTR)
	4.1.14 Set H-Count (HCNT)
	4.1.15 Set V-Count (VCNT)
	4.1.16 Set Super MMC Bank C (CXB)
	4.1.17 Set Super MMC Bank D (DXB)
	4.1.18 Set Super MMC Bank E (EXB)
	4.1.19 Set Super MMC Bank F (FXB)
	4.1.20 Super NES CPU BW-RAM Address Mapping (BMAPS)
	4.1.21 SA-1 CPU BW-RAM Address Mapping (BMAP)
	4.1.22 Super NES CPU BW-RAM Write Enable (SBWE)
	4.1.23 SA-1 CPU BW-RAM Write Enable (CBWE)
	4.1.24 BW-RAM Write-Protected Area (BWPA)
	4.1.25 SA-1 I-RAM Write Protection (SIWP)
	4.1.26 SA-1 I-RAM Write Protection (CIWP)
	4.1.27 DMA Control (DCNT)
	4.1.28 Character Conversion DMA Parameters (CDMA)
	4.1.29 DMA Source Device Start Address (SDA)
	4.1.30 DMA Destination Start Address (DDA)
	4.1.31 DMA Terminal Counter (DTC)
	4.1.32 BW-RAM Bit Map Format (BBF)
	4.1.33 Bit Map Register File (BRF)
	Figure 1-4-4 Bitmap Register Files 0 - 7
	Figure 1-4-5 Bitmap Register Files 8 - F

	4.1.34 Arithmetic Control (MCNT)
	4.1.35 Arithmetic Parameters: Multiplicand / Dividend (MA)
	4.1.36 Arithmetic Parameters: Multiplier / Divisor (MB)
	4.1.37 Variable-Length Bit Processing (VBD)
	4.1.38 Variable-Length Bit Game Pak ROM Start Address (VDA)
	4.1.39 Super NES CPU Flag Read (SFR)
	4.1.40 SA-1 CPU Flag Read (CFR)
	4.1.41 H-Count Read (HCR)
	4.1.42 V-Count Read (VCR)
	4.1.43 Arithmetic Result (Product / Quotient / Accumulative Sum) (MR)
	4.1.44 Arithmetic Overflow Flag (OF)
	4.1.45 Variable-Length Data Read Port (VDP)
	4.1.45 Version Code Register (VC)


	Chapter 5. Multi-Processor Processing
	5.1 Multi-Processor System
	5.2 Starting and Stopping the SA-1 CPU
	5.2.1 Starting the SA-1 CPU
	5.2.2 Stopping the SA-1 CPU

	5.3 MPU Handshakes
	5.3.1 Interrupts
	Table 1-5-1 Types of Interrupts
	Table 1-5-2 Interrupt Identification and Clear
	Table 1-5-3 Interrupt Mask

	5.3.2 Message
	Table 1-5-4 Sending and Receiving a Message


	5.4 Shared Memory
	5.5 Vector Switching
	Table 1-5-5 Situation Dependant Vectors

	5.6 SA-1 CPU Core
	5.6.1 Vectors
	5.6.2 SA-1 CPU Wait

	5.7 Operation Modes
	5.7.1 Accelerator Mode
	Figure 1-5-1 Accelerator Mode

	5.7.2 Parallel Processing Mode
	Figure 1-5-2 Parallel Processing Mode

	5.7.3 Mixed Processing Mode
	Figure 1-5-3 Mixed Processing Mode

	5.8 Operating Modes and Processing Speeds
	Table 1-5-6 Opeerating Modes and Processing Speeds



	Chapter 6. Character Conversion
	6.1 Introduction to Character Conversion
	6.1.1 Bitmap Format

	6.2 Character Conversion Functions
	6.2.1 Character Conversion 1
	Figure 1-6-1 Character Conversion 1

	6.2.2 Character Conversion 2
	Figure 1-6-2 Character Conversion 2


	6.3 Bitmap Access
	Figure 1-6-3 Compressed Bitmap Data
	6.3.1 BW-RAM Image Projection
	Figure 1-6-4 Bitmap Image Projection

	6.3.2 BW-RAM Data Expansion
	Figure 1-6-5 Bitmap Data Expansion
	Figure 1-6-6 Memory Addresses for the Bitmap Area
	Table 1-6-1 Horizontal Size of VRAM (CDMA Register)


	6.4 Character Conversion 1, Detailed Description
	Figure 1-6-7 Character Conversion Buffers

	6.5 Character Conversion 1 Programming Procedure
	Table 1-6-2 Number of Zero Bits in BW-RAM

	6.6 Character Conversion 2, Detailed Description
	Table 1-6-3 Character Conversion and Data Format

	6.7 Character Conversion 2 Programming Procedure

	Chapter 7. Arithmetic Function
	7.1 Types of Arithmetic Operations
	Table 1-7-1 Arithmetic Operations Settings and Cycles

	7.2 Multiplication
	7.3 Division
	7.4 Cumulative Sum

	Chapter 8. Variable-Length Bit Processing
	8.1 Reading Variable-Length Data
	8.2 Fixed Mode
	Figure 1-8-1 Fixed Mode Process Flow Diagram

	8.3 Auto-Increment Mode
	Figure 1-8-2 Auto-Increment Mode Process Flow Diagram

	8.4 Variable-Length Data Processing Settings
	Table 1-8-1 Amount of Barrel Shift
	Figure 1-8-3 Barrel Shift Process


	Chapter 9. DMA
	9.1 Types of DMA
	Figure 1-9-1 Normal DMA
	Figure 1-9-2 Character Conversion DMA

	9.2 Normal DMA Operation
	Table 1-9-1 Source Device Settings
	Table 1-9-2 Destination Device Settings

	9.3 DMA Transmission Speed
	Table 1-9-3 DMA Transmission Speed



	Section 2 - Super FX
	Chapter 1. Introduction to Super FX
	1.1 Features
	1.1.1 RISC-Like Instructions
	1.1.2 High Speed Clock Operation
	1.1.3 Built-In Instruction Cache
	1.1.4 Super NES CPU's Memory May Be Used
	1.1.5 Independent ROM and RAM Buses
	1.1.6 Parallel Operations with Super NES CPU
	1.1.7 Graphics Function
	1.1.8 Pipeline Processing

	1.2 Special Conventions
	1.3 System Configuration
	Figure 2-1-1 Super FX System Configuration

	1.4 System Operation
	Figure 2-1-2 Game Pak ROM / RAM Bus Diagram

	1.5 Example of Usage
	1.5.1 Reset Super NES
	1.5.2 WRAM
	1.5.3 Activation of GSU
	1.5.4 GSU Stop Command
	1.5.5 GSU Disconnect
	1.5.6 Example Summary
	1.5.7 Current Consumption


	Chapter 2. GSU Function Operation
	2.1 GSU Functional Block Diagram
	Figure 2-2-1 GSU Functional Block Diagram
	2.1.1 Super NES CPU Interface
	2.1.2 Instruction Controller
	2.1.3 Game Pak ROM Controller
	2.1.4 Game Pak RAM Controller
	2.1.5 General Registers
	2.1.6 Operator

	2.2 Registers
	Table 2-2-1 Registers Listed by Functional Group
	2.2.1 General Registers
	2.2.1.1 R0 - R13
	2.2.1.2 R14
	2.2.1.3 R15
	2.2.1.4 Status / Flag Register (SFR)

	2.2.2 Registers Related to Memory Operations
	2.2.2.1 Program Bank Register (PBR)
	2.2.2.2 Game Pak ROM Bank Register (ROMBR)
	2.2.2.3 Game Pak RAM Bank Register (RAMBR)
	2.2.2.4 Cache Base Register (CBR)

	2.2.3 Plot Related Registers
	2.2.3.1 Screen Base Register (SCBR)
	2.2.3.2 Screen Mode Register (SCMR)
	2.2.3.3 Color Register (COLR)
	2.2.3.4 Plot Option Register (POR)

	2.2.4 Other Registers
	2.2.4.1 B-RAM Register (BRAMR)
	2.2.4.2 Version Code Register (VCR)
	2.2.4.3 Config Register (CFGR)
	2.2.4.4 Clock Select Register (CLSR)


	2.3 Instruction Set
	Table 2-2-2 Instruction Set


	Chapter 3. Memory Mapping
	3.1 Super NES CPU Memory Map
	3.1.1 GSU Interface
	3.1.2 Game Pak ROM
	3.1.3 Game Pak RAM
	3.1.4 Back-Up RAM
	3.1.5 Super NES CPU ROM
	Figure 2-3-1 Super NES CPU Memory Map

	3.2 GSU Memory Mapping
	3.2.1 Game Pak ROM
	3.2.2 Game Pak RAM
	Figure 2-3-2 Super FX Memory Map


	Chapter 4. GSU Internal Register Configuration
	4.1 General Registers (R0 - R13)
	Table 2-4-1 GSU General Registers
	Figure 2-4-1 Example of General Register

	4.2 Game Pak ROM Address Pointer (R14)
	4.3 Program Counter (R15)
	4.4 Status / Flag Register (SFR)
	Table 2-4-2 GSU Status Register Flags

	4.5 Program Bank Register (PBR)
	4.6 Game Pak ROM Bank Register (ROMBR)
	4.7 Game Pak RAM Bank Register (RAMBR)
	4.8 Cache Base Register (CBR)
	4.9 Screen Base Register (SCBR)
	4.10 Screen Mode Register (SCMR)
	4.10.1 Screen Height
	Table 2-4-3 Screen Height

	4.10.2 Color Gradient
	Table 2-4-4 Color Gradient

	4.10.3 ROM / RAM Enable Flags

	4.11 Color Register (COLR)
	4.12 Plot Option Register (POR)
	4.13 Back-Up RAM Register (BRAMR)
	4.14 Version Code Register (VCR)
	4.15 Config Register (CFGR)
	4.16 Clock Select Register (CLSR)

	Chapter 5. GSU Program Execution
	5.1 Starting the GSU
	5.1.1 Starting GSU Program in Game Pak ROM
	5.1.1.1 Bus Control
	5.1.1.2 Register Addressing

	5.1.2 Starting GSU Program in Game Pak RAM
	5.1.2.1 Transfer GSU Program
	5.1.2.2 Register Addressing

	5.1.3 Starting GSU Program in Cache RAM
	5.1.3.1 Transfer GSU Program
	5.1.3.2 Register Addressing


	5.2 Stopping the GSU
	5.2.1 GSU Auto-Stop Using STOP Instruction
	5.2.2 Forced Stop from Super NES CPU Using GO Flag

	5.3 Memory Access from Super NES CPU During GSU Operation
	5.4 Interrupts
	5.4.1 Super NES CPU Interrupt Vector
	Table 2-5-1 Dummy Interrupt Vector Addresses
	Table 2-5-2 Dummy Data

	5.4.2 Interrupt from GSU to Super NES CPU


	Chapter 6. Instruction Execution
	6.1 Reading Instruction Code
	6.1.1 Execution in Game Pak ROM / RAM
	6.1.2 Execution in Cache RAM

	6.2 Pipeline Processing
	6.3 Program Counter
	6.4 Flag Prefixes
	6.5 Register Prefixes
	6.6 LOOP
	6.7 Subroutines
	6.8 Cache RAM
	6.8.1 Using CACHE Instructions
	6.8.2 Cache Operation
	Figure 2-6-1 Load to Cache RAM While Branching
	6.8.3 Cache RAM Access from the Super NES
	6.8.4 GSU Exclusive Operation in Cache RAM


	Chapter 7. Data Access
	7.1 Game Pak ROM Data
	7.1.1 GSU Program Running in Cache RAM or Game Pak RAM
	7.1.2 GSU Program Running in Game Pak ROM

	7.2 Game Pak RAM Data
	7.2.1 GSU Program Running in Cache RAM or Game Pak ROM
	7.2.2 GSU Program Running in Game Pak RAM

	7.3 Bulk Processing

	Chapter 8. GSU Special Functions
	8.1 Bitmap Emulation
	8.1.1 Set Screen Mode
	8.1.1.1 Screen Mode Register (SCMR)
	Figure 2-8-1 128 Dot High BG Character Array
	Figure 2-8-2 160 Dot High BG Character Array
	Figure 2-8-3 192 Dot High BG Character Array
	Figure 2-8-4 OBJ Character Array

	8.1.1.2 Screen Base Register (SCBR)
	8.1.1.3 CMODE Instruction

	8.1.2 Set Color (COLOR, GETC)
	8.1.3 Plot Processing (PLOT)
	8.1.3.1 Plotting to Same Character Block
	8.1.3.2 Plotting to a Different Character Block
	8.1.3.3 RPIX Instruction

	8.1.4 PLOT Function and CMODE
	Table 2-8-1 Functions of CMODE
	8.1.4.1 Bit 0
	8.1.4.2 Bit 1
	8.1.4.3 Bit 2
	8.1.4.4 Bit 3
	8.1.4.5 Bit 4
	Figure 2-8-5 Plot Operations Assigend by CMODE

	8.1.5 Plot Data Address Calculation Methods

	8.2 Multiplication Instructions
	8.2.1 Internal Processing of FMULT and LMULT


	Chapter 9. Description of Instructions
	9.1 Operand Descriptions
	9.2 Flag Descriptions
	9.3 Operator Functions
	9.4 ADC Rn
	9.5 ADC #n
	9.6 ADD Rn
	9.7 ADD #n
	9.8 ALT1
	9.9 ALT2
	9.10 ALT3
	9.11 AND Rn
	9.12 AND #n
	9.13 ASR
	9.14 BCC e
	9.15 BCS e
	9.16 BEQ e
	9.17 BGE e
	9.18 BIC Rn
	9.19 BIC #n
	9.20 BLT e
	9.21 BMI e
	9.22 BNE e
	9.23 BPL e
	9.24 BRA e
	9.25 BVC e
	9.26 BVS e
	9.27 CACHE
	9.28 CMODE
	9.29 CMP Rn
	9.30 COLOR
	9.31 DEC Rn
	9.32 DIV2
	9.33 FMULT
	9.34 FROM Rn
	9.35 GETB
	9.36 GETBH
	9.37 GETBL
	9.38 GETBS
	9.39 GETC
	9.40 HIB
	9.41 IBT Rn, #pp
	9.42 INC Rn
	9.43 IWT Rn, #xx
	9.44 JMP Rn
	9.45 LDB (Rm)
	9.46 LDW (Rm)
	9.47 LEA Rn, xx
	9.48 LINK #n
	9.49 LJMP Rn
	9.50 LM Rn, (xx)
	9.51 LMS Rn, (yy)
	9.52 LMULT
	9.53 LOB
	9.54 LOOP
	9.55 LSR
	9.56 MERGE
	9.57 MOVE Rn, Rn'
	9.58 MOVE Rn, #xx
	9.59 MOVE Rn, (xx)
	9.60 MOVE (xx), Rn
	9.61 MOVEB Rn, (Rn')
	9.62 MOVEB (Rn'), Rn
	9.63 MOVES Rn, Rn'
	9.64 MOVEW Rn, (Rn')
	9.65 MOVEW (Rn'), Rn
	9.66 MULT Rn
	9.67 MULT #n
	9.68 NOP
	9.69 NOT
	9.70 OR Rn
	9.71 OR #n
	9.72 PLOT
	9.73 RAMB
	9.74 ROL
	9.75 ROMB
	9.76 ROR
	9.77 RPIX
	9.78 SBC Rn
	9.79 SBK
	9.80 SEX
	9.81 SM (xx), Rn
	9.82 SMS (yy), Rn
	9.83 STB (Rm)
	9.84 STOP
	9.85 STW (Rm)
	9.86 SUB Rn
	9.87 SUB #n
	9.88 SWAP
	9.89 TO Rn
	9.90 UMULT Rn


	Section 3 - DSP/DSP1
	Chapter 1. Introduction to DSP1
	1.1 Super NES CPU Support
	1.2 Pseudo 3-Dimensional Graphics
	1.3 Complex Math Processing
	1.4 System Block Diagram
	Figure 3-1-1 System Block Diagram (DSP1)

	1.5 DSP1 Operation
	1.5.1 Command Execution
	Figure 3-1-2 Super NES CPU and DSP1 Communications
	Figure 3-1-3 DSP1 Command Execution


	1.6 Memory Mapping
	1.6.1 Mode 20 / DSP
	Figure 3-1-4 Mode 20 / DSP Memory Map

	1.6.2 Mode 21 / DSP
	Figure 3-1-5 Mode 21 / DSP Memory Map


	Chapter 2. Command Summary
	Table 3-2-1 DSP1 Command Summary

	Chapter 3. Parameter Data Type
	Table 3-3-1 Parameter Data Type

	Chapter 4. Use of DSP1
	4.1 DSP1 DR Register
	Figure 3-4-1 Super NES / DSP1 Memory Mapping (Mode 21)

	4.2 DSP1 Status Register
	Figure 3-4-2 DSP1 Status Register Configuration

	4.3 RQM
	4.4 DMA Transfer
	4.5 Operation Summary
	Figure 3-4-3 DSP1 Operations Flow Diagram
	Figure 3-4-4 Super NES CPU / DSP1 Operational Timing


	Chapter 5. Description of DSP1 Commands
	5.1 General Calculation
	5.1.1 16-Bit Multiplication (Decimal, Integer)
	Equation 5-1

	5.1.2 Inverse Calculation (Floating Point)
	Equation 5-2

	5.1.3 Trigonometric Calculation
	Equation 5-3
	Figure 3-5-1 Trigonometric Calculation


	5.2 Vector Calculation
	5.2.1 Vector Size
	Equation 5-4
	Figure 3-5-2 Vector Calculation

	5.2.2 Vector Size Comparison
	Equation 5-5
	Figure 3-5-3 Vector Size Comparison

	5.2.3 Vector Absolute Value Calculation
	Equation 5-6
	Figure 3-5-4 Vector Absolute Value Calculation


	5.3 Coordinate Calculation
	5.3.1 Two-Dimensional Coordinate Rotation
	Equation 5-7
	Figure 3-5-5 Two-Dimensional Coordinate Rotation

	5.3.2 Three-Dimensional Coordinate Rotation
	Equation 5-8
	Figure 3-5-6 Examples of Three-Dimensional Rotation


	5.4 Projection Calculation
	5.4.1 Projection Parameter Setting
	Figure 3-5-7 Assignment of Projection Parameter
	Figure 3-5-8 Relationship of Sight and Projected Plane

	5.4.2 Raster Data Calculation
	Figure 3-5-9 Calculation of Raster Data
	Figure 3-5-10 BG Screen and Displayed Area

	5.4.3 Object Projection Calculation
	Figure 3-5-11 Calculation of Projected Position of Object
	Figure 3-5-12 Projection Image of Object

	5.4.4 Coordinate Calculation of a Selected Point on the Screen
	Figure 3-5-13 Calculation of Coordinates for the Indicated Point on the Screen
	Figure 3-5-14 Attack Point and Position Indicated on Screen (Side View)


	5.5 Attitude Control
	5.5.1 Set Attitude
	Equation 5-9
	Figure 3-5-15 Attitude Computation
	Figure 3-5-16 Object Coordinate Rotated on Y Axis
	Figure 3-5-17 Object Coordinate Rotated on X Axis
	Figure 3-5-18 Object Coordinate Rotated on Z Axis

	5.5.2 Convert from Global to Object Coordinates
	Equation 5-10
	Figure 3-5-19 Conversion of Global to Objective Coordinates

	5.5.3 Conversion from Object to Global Coordinates
	Equation 5-11
	Figure 3-5-20 Conversion of Object to Global Coordinates

	5.5.4 Calculation of Inner Product with Forward Attitude and a Vector
	Figure 3-5-21 Calculation of Inner Product with Forward Attitude
	Equation 5-12
	Figure 3-5-22 Position of Aircraft and Vector Code


	5.6 New Angle Calculation
	5.6.1 Three-Dimensional Angle Rotation
	Equation 5-13
	Figure 3-5-23 Calculation of Rotation Angle After Attitude Change



	Chapter 6. Math Functions and Equations
	6.1 Multiply
	6.2 Inverse
	6.3 Triangle
	6.4 Radius
	6.5 Range
	6.6 Distance
	6.7 Gyrate
	6.8 Rotate
	6.9 Polar
	6.10 Attitude
	6.11 Objective
	6.12 Subjective
	6.13 Scalar


	Section 4 - Accessories
	Chapter 1. The Super NES Super Scope System
	1.1 Introduction to the Super NES Super Scope System
	1.1.1 Targeting
	Figure 4-1-1 Signal Flow

	1.1.2 Super NES Super Scope Sight Adjustment
	Figure 4-1-2 Optical Alignment
	Figure 4-1-3 Virtual Screen Alignment


	1.2 Basic Super NES Super Scope Specifications
	1.3 Super NES Program Address
	1.3.1 Register Bit Assignment
	Figure 4-1-4 Address and Bit Assignments
	Table 4-1-1 Signal Bit Definitions



	Chapter 2. Principles of the Super NES Super Scope
	2.1 Principles of the Super NES Super Scope
	Figure 4-2-1 Picture Tube
	Figure 4-2-2 Scanning
	Figure 4-2-3 Area Seen by Super NES Super Scope

	2.2 Super NES Super Scope Programming
	Figure 4-2-4 Vertical Positioning
	Figure 4-2-5 Horizontal Positioning

	2.3 The Super NES Horizontal / Vertical Counter
	Figure 4-2-6 Horizontal / Vertical Counter


	Chapter 3. Super NES Super Scope Functional Operation
	3.1 Super NES Super Scope CPU
	3.1.1 Keys
	3.1.2 Key Priority
	3.1.3 Key Recognition
	3.1.4 Simultaneous Key Input

	3.2 Super NES Super Scope Block Diagram
	Figure 4-3-1 Super NES Super Scope Block Diagram
	3.2.1 Light Receiver / Amplifier
	3.2.2 Super NES Super Scope CPU (SM595)
	3.2.3 Light Output

	3.3 Super NES Super Scope Flow Diagram
	Figure 4-3-2 Super NES Super Scope Flow Diagram

	3.4 Infra-red Data Transmission Format
	3.4.1 Overview
	Figure 4-3-3 Raster Signal

	3.4.2 Description of One Byte
	Figure 4-3-4 Definition of One Byte
	Figure 4-3-5 Output Signal Code

	3.4.3 Communication Codes
	Figure 4-3-6 Definitions of Codes

	3.4.4 Raster Signal Transmission Timing
	Figure 4-3-7 Raster Signal Transmission Timing



	Chapter 4. Super NES Super Scope Receiver Functions
	4.1 Super NES Super Scope Receiver Block Diagram
	Figure 4-4-1 Receiver Block Diagram
	4.1.1 Infra-red Light Receiver / Amplifier
	4.1.2 Super NES Super Scope Receiver CPU
	4.1.3 Shift Register
	4.1.4 Operations Flow Diagram
	Figure 4-4-2 Operation Flow Diagram


	4.2 Super NES Super Scope Receiver Interface
	Figure 4-4-3 Receiver Interface Schematic

	4.3 Code Pulse Detection
	4.3.1 One Bit Code Detection
	Figure 4-4-4 One Bit Code Detection

	4.3.2 Raster Pulse Detection

	4.4 Functional Description
	4.4.1 Cursor Mode
	Figure 4-4-5 Cursor Mode Raster Detection Cycle

	4.4.2 Trigger Mode (Single Shot)
	Figure 4-4-6 Trigger Mode, Single Shot

	4.4.3 Trigger Mode (Multiple Shots)
	Figure 4-4-7 Trigger Mode, Multiple Shots

	4.4.4 Noise Flag
	Figure 4-4-8 Noise Flag

	4.4.5 Null Bit
	Figure 4-4-9 Null Bit

	4.4.6 Pause Bit
	Figure 4-4-10 Pause Bit

	4.4.7 Cursor + Trigger Cycle
	4.4.7.1 Trigger (Single Shot)
	Figure 4-4-11 Trigger, Single Shot

	4.4.7.2 Trigger (Multiple Shots)
	Figure 4-4-12 Trigger, Multiple Shots




	Chapter 5. Graphics
	5.1 Limitations on Graphics
	5.2 Super NES Super Scope Optical Color Sensitivity Chart
	Figure 4-5-1 Optical Color Sensitivity Chart


	Chapter 6. Super NES Mouse Specifications
	6.1 Introduction to Super NES Mouse
	6.2 Super NES Mouse Data Flow
	Figure 4-6-1 Valid Super NES Mouse Data String
	6.2.1 Data Transmission
	6.2.2 Read Methods
	6.2.2.1 Method 1
	6.2.2.2 Method 2
	Figure 4-6-2 Serial Data Read Timing


	6.3 Speed Switching
	6.3.1 Using Software
	6.3.2 Use of OUT0 and CUP0 Signals
	6.3.3 Cautions

	6.4 Data
	6.4.1 Signature (SD12 - SD15)
	6.4.2 Speed Data (SD10 and SD11)
	6.4.3 Left and Right Actuators (SD8 and SD9)
	6.4.4 X, Y Absolute Displacement (SD16 - SD31)
	Figure 4-6-3 Explanation of Data Strings 2 Bits or Longer

	6.5 Super NES Mouse Specifications
	6.5.1 Electrical Specifications
	6.5.2 Operational and Endurance Specifications
	6.5.3 Dimensions
	Figure 4-6-4 Super NES Mouse Dimensions



	Chapter 7. Using the Standard BIOS
	7.1 The Standard BIOS
	7.2 Mouse Serial Data Read Routine (mouse_read)
	Figure 4-7-1 Standard BIOS, Output Register

	7.3 Super NES Mouse Speed Switching Routine / speed_change
	7.3.1 Caution
	7.3.2 Using the Program

	7.4 Speed Selection and Cursor Movement
	7.4.1 Fast (10B)
	7.4.2 Normal (01B)
	7.4.3 Slow (00B)

	7.5 Registers
	Mouse Driver Routine (Ver 1.00)
	mouse_read
	speed_change


	Chapter 8. Programming Cautions
	8.1 Caution #1
	8.2 Caution #2
	8.3 Caution #3
	8.4 Caution #4
	8.5 Caution #5
	8.6 Caution #6

	Chapter 9. MultiPlayer 5 Specifications
	9.1 Introduction to MultiPlayer 5
	9.2 Hardware Connections
	Figure 4-9-1 MultiPlayer 5 Device Hardware Connections

	9.3 Modes of Operation
	Table 4-9-1 MultiPlayer 5 Switch Function
	9.3.1 Two Player Mode
	9.3.2 Five Player Mode

	9.4 Programming Cautions for Compatible Software
	9.4.1 Caution #1
	9.4.2 Caution #2
	9.4.3 Caution #3
	9.4.4 Caution #4
	9.4.5 Caution #5
	9.4.6 Caution #6
	9.4.7 Caution #7
	9.4.8 Caution #8

	9.5 Reading Data
	9.5.1 Standard Controller Connected (5P Mode)
	9.5.1.1 Read Timing
	Figure 4-9-2 MultiPlayer 5 Read Timing Chart, 5P Mode

	9.5.1.2 Data Format
	Table 4-9-2 MultiPlayer 5 Data Format


	9.5.2 Peripheral Device Connections
	9.5.2.1 Incompatible Devices
	9.5.2.2 Dissimilar Devices
	Figure 4-9-3 Data Read Timing for Dissimilar Devices



	9.6 Identifying Devices Connected to MultiPlayer 5
	9.6.1 Signatures
	9.6.2 MultiPlayer 5 Signature

	9.7 MultiPlayer 5 Schematic Diagram
	9.8 Reading Controller Data
	9.8.1 Controller Data Storage
	9.8.2 Controller I/O Ports
	9.8.2.1 Register <4016H> (D0, D1 Read)
	9.8.2.2 Register <4017H> (D0, D1 Read)
	9.8.2.3 Register <4016H> (D0 Write)
	9.8.2.4 Register <4201H> (D6, D7 Write)
	9.8.2.5 Register <4213H> (D6, D7 Read)
	Figure 4-9-4 Valid Controller Data String



	Chapter 10. MultiPlayer 5 Supplied BIOS
	10.1 File Description
	10.1.1 BIOS Files
	10.1.2 Sample Program Files

	10.2 Sample Program Execution
	10.2.1 Operation Parameters
	10.2.2 Sample Program Utilization
	Figure 4-10-1 Sample Program Display Format


	10.3 Supplied BIOS Execution
	10.4 Supplied BIOS Output Register
	10.5 Supplied BIOS Cautions
	10.5.1 Caution #1
	10.5.2 Caution #2
	10.5.3 Caution #3
	10.5.4 Caution #4
	10.5.5 Caution #5

	10.6 MultiPlayer 5 Supplied BIOS Program Listings
	MultiPlayer connection check routine ver x.xx
	MultiPlayer driver routine ver x.xx

	10.7 MultiPlayer Development Assembly


	Supplemental Information
	Chapter 1. Super NES Parts List

	Index
	Book I
	A - M
	N - W

	Book II
	Commands / Instructions
	A - ROMB
	ROR - XOR

	Subject - Alphabetical Listing
	A - B
	C - L
	M - R
	S - X




